
Simulation

Fifth Edition

Simulation
Fifth Edition

Sheldon M. Ross
Epstein Department of Industrial

and Systems Engineering

University of Southern California

AMSTERDAM d BOSTON d HEIDELBERG d LONDON
NEW YORK d OXFORD d PARIS d SAN DIEGO

SAN FRANCISCO d SINGAPORE d SYDNEY d TOKYO

Academic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
32 Jamestown Road, London NW17BY, UK
Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands

Fifth edition 2013

Copyright � 2013, 2006, 2001, 1997, and 1990. Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or
transmitted in any form or by any means electronic, mechanical, photocopying,
recording or otherwise without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology
Rights Department in Oxford, UK: phone (+44) (0) 1865 843830;
fax (+44) (0) 1865 853333; email: permissions@elsevier.com.
Alternatively you can submit your request online by visiting the
Elsevier web site at http://elsevier.com/locate/permissions, and selecting
Obtaining permission to use Elsevier material.

Notice

No responsibility is assumed by the publisher for any injury and/or damage to
persons or property as a matter of products liability, negligence or otherwise, or from
any use or operation of any methods, products, instructions or ideas contained in the
material herein. Because of rapid advances in the medical sciences, in particular,
independent verification of diagnoses and drug dosages should be made.

Library of Congress Cataloging-in-Publication Data

Ross, Sheldon M.
Simulation / Sheldon M. Ross, Epstein Department of Industrial and Systems

Engineering, University of Southern California. – Fifth edition.
pages cm

Includes bibliographical references and index.
ISBN 978-0-12-415825-2 (hardback)
1. Random variables. 2. Probabilities. 3. Computer simulation. I. Title.
QA273.R82 2012
519.2–dc23

2012027466

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN: 978-0-12-415825-2

For information on all Academic Press publications

visit our website at store.elsevier.com

Printed and bound in USA
13 14 15 16 10 9 8 7 6 5 4 3 2 1

Preface

Overview

In formulating a stochastic model to describe a real phenomenon, it used to be that
one compromised between choosing a model that is a realistic replica of the actual
situation and choosing one whose mathematical analysis is tractable. That is, there
did not seem to be any payoff in choosing a model that faithfully conformed to
the phenomenon under study if it were not possible to mathematically analyze
that model. Similar considerations have led to the concentration on asymptotic or
steady-state results as opposed to the more useful ones on transient time. However,
the advent of fast and inexpensive computational power has opened up another
approach—namely, to try to model the phenomenon as faithfully as possible and
then to rely on a simulation study to analyze it.

In this text we show how to analyze a model by use of a simulation study. In
particular, we first show how a computer can be utilized to generate random (more
precisely, pseudorandom) numbers, and then how these random numbers can be
used to generate the values of random variables from arbitrary distributions. Using
the concept of discrete events we show how to use random variables to generate the
behavior of a stochastic model over time. By continually generating the behavior of
the system we show how to obtain estimators of desired quantities of interest. The
statistical questions of when to stop a simulation and what confidence to place in
the resulting estimators are considered. A variety of ways in which one can improve
on the usual simulation estimators are presented. In addition, we show how to use
simulation to determine whether the stochastic model chosen is consistent with a
set of actual data.

ix

x Preface

New to This Edition

• New exercises in most chapters.
• A new Chapter 6, dealing both with the multivariate normal distribution, and

with copulas, which are useful for modeling the joint distribution of random
variables.

• Chapter 9, dealing with variance reduction, includes additional material on
stratification. For instance, it is shown that stratifying on a variable always
results in an estimator having smaller variance than would be obtaind by
using that variable as a control. There is also a new subsection on the use of
post stratification.

• There is a new chapter dealing with additional variance reduction methods
beyond those previously covered. Chapter 10 introduces the conditional
Bernoulli sampling method, normalized importance sampling, and Latin
Hypercube sampling.

• The chapter on Markov chain Monte Carlo methods has an new section
entitled Continuous time Markov chains and a Queueing Loss Model.

Chapter Descriptions

The successive chapters in this text are as follows. Chapter 1 is an introductory
chapter which presents a typical phenomenon that is of interest to study. Chapter 2
is a review of probability. Whereas this chapter is self-contained and does not
assume the reader is familiar with probability, we imagine that it will indeed be a
review for most readers. Chapter 3 deals with random numbers and how a variant
of them (the so-called pseudorandom numbers) can be generated on a computer.
The use of random numbers to generate discrete and then continuous random
variables is considered in Chapters 4 and 5.

Chapter 6 studies the multivariate normal distribution, and introduces copulas
which are useful for modeling the joint distribution of random variables. Chapter 7
presents the discrete event approach to track an arbitrary system as it evolves
over time. A variety of examples—relating to both single and multiple server
queueing systems, to an insurance risk model, to an inventory system, to a machine
repair model, and to the exercising of a stock option—are presented. Chapter 8
introduces the subject matter of statistics. Assuming that our average reader has not
previously studied this subject, the chapter starts with very basic concepts and ends
by introducing the bootstrap statistical method, which is quite useful in analyzing
the results of a simulation.

Chapter 9 deals with the important subject of variance reduction. This is an
attempt to improve on the usual simulation estimators by finding ones having
the same mean and smaller variances. The chapter begins by introducing the
technique of using antithetic variables. We note (with a proof deferred to the
chapter’s appendix) that this always results in a variance reduction along with

Preface xi

a computational savings when we are trying to estimate the expected value of
a function that is monotone in each of its variables. We then introduce control
variables and illustrate their usefulness in variance reduction. For instance, we show
how control variables can be effectively utilized in analyzing queueing systems,
reliability systems, a list reordering problem, and blackjack. We also indicate how
to use regression packages to facilitate the resulting computations when using
control variables. Variance reduction by use of conditional expectations is then
considered, and its use is indicated in examples dealing with estimating π , and
in analyzing finite capacity queueing systems. Also, in conjunction with a control
variate, conditional expectation is used to estimate the expected number of events
of a renewal process by some fixed time. The use of stratified sampling as a variance
reduction tool is indicated in examples dealing with queues with varying arrival
rates and evaluating integrals. The relationship between the variance reduction
techniques of conditional expectation and stratified sampling is explained and
illustrated in the estimation of the expected return in video poker. Applications of
stratified sampling to queueing systems having Poisson arrivals, to computation of
multidimensional integrals, and to compound random vectors are also given. The
technique of importance sampling is next considered. We indicate and explain how
this can be an extremely powerful variance reduction technique when estimating
small probabilities. In doing so, we introduce the concept of tilted distributions
and show how they can be utilized in an importance sampling estimation of
a small convolution tail probability. Applications of importance sampling to
queueing, random walks, and random permutations, and to computing conditional
expectations when one is conditioning on a rare event are presented. The final
variance reduction technique of Chapter 9 relates to the use of a common stream of
random numbers. Chapter 10 introduces additional variance reduction techniques.

Chapter 11 is concerned with statistical validation techniques, which are
statistical procedures that can be used to validate the stochastic model when some
real data are available. Goodness of fit tests such as the chi-square test and the
Kolmogorov–Smirnov test are presented. Other sections in this chapter deal with
the two-sample and the n-sample problems and with ways of statistically testing
the hypothesis that a given process is a Poisson process.

Chapter 12 is concerned with Markov chain Monte Carlo methods. These are
techniques that have greatly expanded the use of simulation in recent years. The
standard simulation paradigm for estimating θ = E[h(X)], where X is a random
vector, is to simulate independent and identically distributed copies of X and
then use the average value of h(X) as the estimator. This is the so-called “raw”
simulation estimator, which can then possibly be improved upon by using one or
more of the variance reduction ideas of Chapters 9 and 10. However, in order to
employ this approach it is necessary both that the distribution of X be specified and
also that we be able to simulate from this distribution. Yet, as we see in Chapter 12,
there are many examples where the distribution of X is known but we are not able to
directly simulate the random vector X, and other examples where the distribution
is not completely known but is only specified up to a multiplicative constant. Thus,

xii Preface

in either case, the usual approach to estimating θ is not available. However, a new
approach, based on generating a Markov chain whose limiting distribution is the
distribution of X, and estimating θ by the average of the values of the function h
evaluated at the successive states of this chain, has become widely used in recent
years. These Markov chain Monte Carlo methods are explored in Chapter 12.
We start, in Section 12.2, by introducing and presenting some of the properties
of Markov chains. A general technique for generating a Markov chain having a
limiting distribution that is specified up to a multiplicative constant, known as the
Hastings–Metropolis algorithm, is presented in Section 12.3, and an application
to generating a random element of a large “combinatorial” set is given. The most
widely used version of the Hastings–Metropolis algorithm is known as the Gibbs
sampler, and this is presented in Section 12.4. Examples are discussed relating to
such problems as generating random points in a region subject to a constraint that
no pair of points are within a fixed distance of each other, to analyzing product
form queueing networks, to analyzing a hierarchical Bayesian statistical model for
predicting the numbers of home runs that will be hit by certain baseball players,
and to simulating a multinomial vector conditional on the event that all outcomes
occur at least once. An application of the methods of this chapter to deterministic
optimization problems, called simulated annealing, is presented in Section 12.5,
and an example concerning the traveling salesman problem is presented. The final
section of Chapter 12 deals with the sampling importance resampling algorithm,
which is a generalization of the acceptance–rejection technique of Chapters 4 and 5.
The use of this algorithm in Bayesian statistics is indicated.

Thanks

We are indebted to Yontha Ath (California State University, Long Beach) David
Butler (Oregon State University), Matt Carlton (California Polytechnic State
University), James Daniel (University of Texas, Austin), William Frye (Ball State
University), Mark Glickman (Boston University), Chuanshu Ji (University of North
Carolina), Yonghee Kim-Park (California State University, Long Beach), Donald
E. Miller (St. Mary’s College), Krzysztof Ostaszewski (Illinois State University),
Bernardo Pagnocelli, Erol Peköz (Boston University), Yuval Peres (University
of California, Berkeley), John Grego (University of South Carolina, Columbia),
Zhong Guan (Indiana University, South Bend), Nan Lin (Washington University
in St. Louis), Matt Wand (University of Technology, Sydney), Lianming Wang
(University of South Carolina, Columbia), and Esther Portnoy (University of
Illinois, Urbana-Champaign) for their many helpful comments. We would like
to thank those text reviewers who wish to remain anonymous.

1Introduction

Consider the following situation faced by a pharmacist who is thinking of setting
up a small pharmacy where he will fill prescriptions. He plans on opening
up at 9 a.m. every weekday and expects that, on average, there will be about
32 prescriptions called in daily before 5 p.m. experience that the time that it will
take him to fill a prescription, once he begins working on it, is a random quantity
having a mean and standard deviation of 10 and 4 minutes, respectively. He plans
on accepting no new prescriptions after 5 p.m., although he will remain in the shop
past this time if necessary to fill all the prescriptions ordered that day. Given this
scenario the pharmacist is probably, among other things, interested in the answers
to the following questions:

1. What is the average time that he will depart his store at night?
2. What proportion of days will he still be working at 5:30 p.m.?
3. What is the average time it will take him to fill a prescription (taking into

account that he cannot begin working on a newly arrived prescription until
all earlier arriving ones have been filled)?

4. What proportion of prescriptions will be filled within 30 minutes?
5. If he changes his policy on accepting all prescriptions between 9 a.m.

and 5 p.m., but rather only accepts new ones when there are fewer than
five prescriptions still needing to be filled, how many prescriptions, on
average, will be lost?

6. How would the conditions of limiting orders affect the answers to questions
1 through 4?

In order to employ mathematics to analyze this situation and answer the
questions, we first construct a probability model. To do this it is necessary to

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00001-2
© 2013 Elsevier Inc. All rights reserved. 1

http://dx.doi.org/10.1016/B978-0-12-415825-2.00001-2

2 1 Introduction

make some reasonably accurate assumptions concerning the preceding scenario.
For instance, we must make some assumptions about the probabilistic mechanism
that describes the arrivals of the daily average of 32 customers. One possible
assumption might be that the arrival rate is, in a probabilistic sense, constant over
the day, whereas a second (probably more realistic) possible assumption is that
the arrival rate depends on the time of day. We must then specify a probability
distribution (having mean 10 and standard deviation 4) for the time it takes to
service a prescription, and we must make assumptions about whether or not the
service time of a given prescription always has this distribution or whether it
changes as a function of other variables (e.g., the number of waiting prescriptions
to be filled or the time of day). That is, we must make probabilistic assumptions
about the daily arrival and service times. We must also decide if the probability law
describing a given day changes as a function of the day of the week or whether it
remains basically constant over time. After these assumptions, and possibly others,
have been specified, a probability model of our scenario will have been constructed.

Once a probability model has been constructed, the answers to the questions
can, in theory, be analytically determined. However, in practice, these questions
are much too difficult to determine analytically, and so to answer them we usually
have to perform a simulation study. Such a study programs the probabilistic
mechanism on a computer, and by utilizing “random numbers” it simulates possible
occurrences from this model over a large number of days and then utilizes the theory
of statistics to estimate the answers to questions such as those given. In other words,
the computer program utilizes random numbers to generate the values of random
variables having the assumed probability distributions, which represent the arrival
times and the service times of prescriptions. Using these values, it determines over
many days the quantities of interest related to the questions. It then uses statistical
techniques to provide estimated answers—for example, if out of 1000 simulated
days there are 122 in which the pharmacist is still working at 5:30, we would
estimate that the answer to question 2 is 0.122.

In order to be able to execute such an analysis, one must have some knowledge of
probability so as to decide on certain probability distributions and questions such
as whether appropriate random variables are to be assumed independent or not.
A review of probability is provided in Chapter 2. The bases of a simulation study
are so-called random numbers. A discussion of these quantities and how they are
computer generated is presented in Chapter 3. Chapters 4 and 5 show how one can
use random numbers to generate the values of random variables having arbitrary
distributions. Discrete distributions are considered in Chapter 4 and continuous
ones in Chapter 5. Chapter 6 introduces the multivariate normal distribution, and
shows how to generate random variables having this joint distribution. Copulas,
useful for modeling the joint distributions of random variables, are also introduced
in Chapter 6. After completing Chapter 6, the reader should have some insight
into the construction of a probability model for a given system and also how
to use random numbers to generate the values of random quantities related to
this model. The use of these generated values to track the system as it evolves

Exercises 3

continuously over time—that is, the actual simulation of the system—is discussed
in Chapter 7, where we present the concept of “discrete events” and indicate how
to utilize these entities to obtain a systematic approach to simulating systems.
The discrete event simulation approach leads to a computer program, which can
be written in whatever language the reader is comfortable in, that simulates the
system a large number of times. Some hints concerning the verification of this
program—to ascertain that it is actually doing what is desired—are also given in
Chapter 7. The use of the outputs of a simulation study to answer probabilistic
questions concerning the model necessitates the use of the theory of statistics, and
this subject is introduced in Chapter 8. This chapter starts with the simplest and
most basic concepts in statistics and continues toward “bootstrap statistics,” which
is quite useful in simulation. Our study of statistics indicates the importance of the
variance of the estimators obtained from a simulation study as an indication of the
efficiency of the simulation. In particular, the smaller this variance is, the smaller is
the amount of simulation needed to obtain a fixed precision. As a result we are led,
in Chapters 9 and 10, to ways of obtaining new estimators that are improvements
over the raw simulation estimators because they have reduced variances. This
topic of variance reduction is extremely important in a simulation study because
it can substantially improve its efficiency. Chapter 11 shows how one can use
the results of a simulation to verify, when some real-life data are available, the
appropriateness of the probability model (which we have simulated) to the real-
world situation. Chapter 12 introduces the important topic of Markov chain Monte
Carlo methods. The use of these methods has, in recent years, greatly expanded
the class of problems that can be attacked by simulation.

Exercises

1. The following data yield the arrival times and service times that each customer
will require, for the first 13 customers at a single server system. Upon arrival,
a customer either enters service if the server is free or joins the waiting line.
When the server completes work on a customer, the next one in line (i.e., the
one who has been waiting the longest) enters service.

Arrival Times: 12 31 63 95 99 154 198 221 304 346 411 455 537

Service Times: 40 32 55 48 18 50 47 18 28 54 40 72 12

(a) Determine the departure times of these 13 customers.
(b) Repeat (a) when there are two servers and a customer can be served by either

one.
(c) Repeat (a) under the new assumption that when the server completes a

service, the next customer to enter service is the one who has been waiting
the least time.

4 1 Introduction

2. Consider a service station where customers arrive and are served in their order
of arrival. Let An , Sn , and Dn denote, respectively, the arrival time, the service
time, and the departure time of customer n. Suppose there is a single server and
that the system is initially empty of customers.

(a) With D0 = 0, argue that for n > 0

Dn − Sn = Maximum{An, Dn−1}
(b) Determine the corresponding recursion formula when there are two servers.
(c) Determine the corresponding recursion formula when there are k servers.
(d) Write a computer program to determine the departure times as a function of

the arrival and service times and use it to check your answers in parts (a)
and (b) of Exercise 1.

2Elements of Probability

2.1 Sample Space and Events

Consider an experiment whose outcome is not known in advance. Let S, called
the sample space of the experiment, denote the set of all possible outcomes. For
example, if the experiment consists of the running of a race among the seven horses
numbered 1 through 7, then

S = {all orderings of (1, 2, 3, 4, 5, 6, 7)}
The outcome (3, 4, 1, 7, 6, 5, 2) means, for example, that the number 3 horse came
in first, the number 4 horse came in second, and so on.

Any subset A of the sample space is known as an event. That is, an event is
a set consisting of possible outcomes of the experiment. If the outcome of the
experiment is contained in A, we say that A has occurred. For example, in the
above, if

A = {all outcomes in S starting with 5}
then A is the event that the number 5 horse comes in first.

For any two events A and B we define the new event A ∪ B, called the union of
A and B, to consist of all outcomes that are either in A or B or in both A and B.
Similarly, we define the event AB, called the intersection of A and B, to consist of
all outcomes that are in both A and B. That is, the event A∪ B occurs if either A or
B occurs, whereas the event AB occurs if both A and B occur. We can also define
unions and intersections of more than two events. In particular, the union of the
events A1, . . . , An—designated by ∪n

i=1 Ai —is defined to consist of all outcomes
that are in any of the Ai . Similarly, the intersection of the events A1, . . . , An—
designated by A1 A2 · · · An—is defined to consist of all outcomes that are in all of
the Ai .

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00002-4
© 2013 Elsevier Inc. All rights reserved. 5

http://dx.doi.org/10.1016/B978-0-12-415825-2.00002-4

6 2 Elements of Probability

For any event A we define the event Ac, referred to as the complement of A, to
consist of all outcomes in the sample space S that are not in A. That is, Ac occurs if
and only if A does not. Since the outcome of the experiment must lie in the sample
space S, it follows that Sc does not contain any outcomes and thus cannot occur.
We call Sc the null set and designate it by ø. If AB = ø so that A and B cannot
both occur (since there are no outcomes that are in both A and B), we say that A
and B are mutually exclusive.

2.2 Axioms of Probability

Suppose that for each event A of an experiment having sample space S there is a
number, denoted by P(A) and called the probability of the event A, which is in
accord with the following three axioms:

Axiom 1 0 � P(A) � 1

Axiom 2 P(S) = 1

Axiom 3 For any sequence of mutually exclusive events A1, A2, . . .

P

(
n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai), n = 1, 2, . . . ,∞.

Thus, Axiom 1 states that the probability that the outcome of the experiment lies
within A is some number between 0 and 1; Axiom 2 states that with probability
1 this outcome is a member of the sample space; and Axiom 3 states that for any
set of mutually exclusive events, the probability that at least one of these events
occurs is equal to the sum of their respective probabilities.

These three axioms can be used to prove a variety of results about probabilities.
For instance, since A and Ac are always mutually exclusive, and since A∪ Ac = S,
we have from Axioms 2 and 3 that

1 = P(S) = P(A ∪ Ac) = P(A) + P(Ac)

or equivalently

P(Ac) = 1 − P(A)

In words, the probability that an event does not occur is 1 minus the probability
that it does.

2.3 Conditional Probability and Independence 7

2.3 Conditional Probability and Independence

Consider an experiment that consists of flipping a coin twice, noting each time
whether the result was heads or tails. The sample space of this experiment can be
taken to be the following set of four outcomes:

S = {(H, H), (H, T), (T, H), (T, T)}
where (H, T) means, for example, that the first flip lands heads and the second tails.
Suppose now that each of the four possible outcomes is equally likely to occur and
thus has probability 1

4 . Suppose further that we observe that the first flip lands on
heads. Then, given this information, what is the probability that both flips land on
heads? To calculate this probability we reason as follows: Given that the initial
flip lands heads, there can be at most two possible outcomes of our experiment,
namely, (H, H) or (H, T). In addition, as each of these outcomes originally had
the same probability of occurring, they should still have equal probabilities. That
is, given that the first flip lands heads, the (conditional) probability of each of the
outcomes (H, H) and (H, T) is 1

2 , whereas the (conditional) probability of the other
two outcomes is 0. Hence the desired probability is 1

2 .
If we let A and B denote, respectively, the event that both flips land on heads

and the event that the first flip lands on heads, then the probability obtained
above is called the conditional probability of A given that B has occurred and is
denoted by

P(A|B)

A general formula for P(A|B) that is valid for all experiments and events A and
B can be obtained in the same manner as given previously. Namely, if the event
B occurs, then in order for A to occur it is necessary that the actual occurrence
be a point in both A and B; that is, it must be in AB. Now since we know that
B has occurred, it follows that B becomes our new sample space and hence the
probability that the event AB occurs will equal the probability of AB relative to
the probability of B. That is,

P(A|B) = P(AB)

P(B)
.

The determination of the probability that some event A occurs is often simplified
by considering a second event B and then determining both the conditional
probability of A given that B occurs and the conditional probability of A given
that B does not occur. To do this, note first that

A = AB ∪ ABc.

Because AB and ABc are mutually exclusive, the preceding yields

P(A) = P(AB) + P(ABc)

= P(A|B)P(B) + P(A|Bc)P(Bc)

8 2 Elements of Probability

When we utilize the preceding formula, we say that we are computing P(A) by
conditioning on whether or not B occurs.

Example 2a An insurance company classifies its policy holders as being
either accident prone or not. Their data indicate that an accident prone person will
file a claim within a one-year period with probability .25, with this probability
falling to .10 for a non accident prone person. If a new policy holder is accident
prone with probability .4, what is the probability he or she will file a claim within
a year?

Solution Let C be the event that a claim will be filed, and let B be the event that
the policy holder is accident prone. Then

P(C) = P(C |B)P(B)+ P(C |Bc)P(Bc) = (.25)(.4)+(.10)(.6) = .16 �

Suppose that exactly one of the events Bi , i = 1, . . . , n must occur. That is,
suppose that B1, B2, . . . , Bn are mutually exclusive events whose union is the
sample space S. Then we can also compute the probability of an event A by
conditioning on which of the Bi occur. The formula for this is obtained by using
that

A = AS = A(∪n
i=1 Bi) = ∪n

i=1 ABi

which implies that

P(A) =
n∑

i=1

P(ABi)

=
n∑

i=1

P(A|Bi)P(Bi)

Example 2b Suppose there are k types of coupons, and that each new
one collected is, independent of previous ones, a type j coupon with probability
p j ,

∑k
j=1 p j = 1. Find the probability that the nth coupon collected is a different

type than any of the preceding n − 1.

Solution Let N be the event that coupon n is a new type. To compute P(N),
condition on which type of coupon it is. That is, with Tj being the event that coupon
n is a type j coupon, we have

P(N) =
k∑

j=1

P(N |Tj)P(Tj)

=
k∑

j=1

(1 − p j)
n−1 p j

2.4 Random Variables 9

where P(N |Tj) was computed by noting that the conditional probability that
coupon n is a new type given that it is a type j coupon is equal to the conditional
probability that each of the first n − 1 coupons is not a type j coupon, which by
independence is equal to (1 − p j)

n−1. �

As indicated by the coin flip example, P(A|B), the conditional probability
of A, given that B occurred, is not generally equal to P(A), the unconditional
probability of A. In other words, knowing that B has occurred generally changes
the probability that A occurs (what if they were mutually exclusive?). In the special
case where P(A|B) is equal to P(A), we say that A and B are independent. Since
P(A|B) = P(AB)/P(B), we see that A is independent of B if

P(AB) = P(A)P(B)

Since this relation is symmetric in A and B, it follows that whenever A is
independent of B, B is independent of A.

2.4 Random Variables

When an experiment is performed we are sometimes primarily concerned about
the value of some numerical quantity determined by the result. These quantities of
interest that are determined by the results of the experiment are known as random
variables.

The cumulative distribution function, or more simply the distribution function,
F of the random variable X is defined for any real number x by

F(x) = P{X � x}.
A random variable that can take either a finite or at most a countable number of
possible values is said to be discrete. For a discrete random variable X we define
its probability mass function p(x) by

p(x) = P{X = x}
If X is a discrete random variable that takes on one of the possible values x1, x2, . . . ,

then, since X must take on one of these values, we have

∞∑
i=1

p(xi) = 1.

Example 2a Suppose that X takes on one of the values 1, 2, or 3. If

p(1) = 1

4
, p(2) = 1

3

then, since p(1) + p(2) + p(3) = 1, it follows that p(3) = 5
12 . �

10 2 Elements of Probability

Whereas a discrete random variable assumes at most a countable set of possible
values, we often have to consider random variables whose set of possible values
is an interval. We say that the random variable X is a continuous random variable
if there is a nonnegative function f (x) defined for all real numbers x and having
the property that for any set C of real numbers

P{X ∈ C} =
∫

C
f (x)dx (2.1)

The function f is called the probability density function of the random
variable X .

The relationship between the cumulative distribution F(·) and the probability
density f (·) is expressed by

F(a) = P{X ∈ (−∞, a)} =
∫ a

−∞
f (x)dx .

Differentiating both sides yields

d

da
F(a) = f (a).

That is, the density is the derivative of the cumulative distribution function. A
somewhat more intuitive interpretation of the density function may be obtained
from Eqution (2.1) as follows:

P
{

a − ε

2
� X � a + ε

2

}
=
∫ a+ε/2

a−ε/2
f (x)dx ≈ ε f (a)

when ε is small. In other words, the probability that X will be contained in an
interval of length ε around the point a is approximately ε f (a). From this, we see
that f (a) is a measure of how likely it is that the random variable will be near a.

In many experiments we are interested not only in probability distribution
functions of individual random variables, but also in the relationships between
two or more of them. In order to specify the relationship between two random
variables, we define the joint cumulative probability distribution function of X
and Y by

F(x, y) = P{X � x, Y � y}
Thus, F(x, y) specifies the probability that X is less than or equal to x and
simultaneously Y is less than or equal to y.

If X and Y are both discrete random variables, then we define the joint probability
mass function of X and Y by

p(x, y) = P{X = x, Y = y}

2.5 Expectation 11

Similarly, we say that X and Y are jointly continuous, with joint probability density
function f (x, y), if for any sets of real numbers C and D

P{X ∈ C, Y ∈ D} =
∫∫

x ∈ C
y ∈ D

f (x, y)dx dy

The random variables X and Y are said to be independent if for any two sets of
real numbers C and D

P{X ∈ C, Y ∈ D} = P{X ∈ C}P{Y ∈ D}.
That is, X and Y are independent if for all sets C and D the events A = {X ∈ C}
and B = {Y ∈ D} are independent. Loosely speaking, X and Y are independent
if knowing the value of one of them does not affect the probability distribution of
the other. Random variables that are not independent are said to be dependent.

Using the axioms of probability, we can show that the discrete random variables
X and Y will be independent if and only if , for all x, y,

P{X = x, Y = y} = P{X = x}P{Y = y}
Similarly, if X and Y are jointly continuous with density function f (x, y), then
they will be independent if and only if, for all x, y,

f (x, y) = fX (x) fY (y)

where fX (x) and fY (y) are the density functions of X and Y , respectively.

2.5 Expectation

One of the most useful concepts in probability is that of the expectation of a random
variable. If X is a discrete random variable that takes on one of the possible values
x1, x2, . . . , then the expectation or expected value of X , also called the mean of X
and denoted by E [X], is defined by

E [X] =
∑

i

xi P{X = xi } (2.2)

In words, the expected value of X is a weighted average of the possible values that
X can take on, each value being weighted by the probability that X assumes it. For
example, if the probability mass function of X is given by

p(0) = 1

2
= p(1)

12 2 Elements of Probability

then

E [X] = 0

(
1

2

)
+ 1

(
1

2

)
= 1

2

is just the ordinary average of the two possible values 0 and 1 that X can assume.
On the other hand, if

p(0) = 1

3
, p(1) = 2

3
then

E [X] = 0

(
1

3

)
+ 1

(
2

3

)
= 2

3

is a weighted average of the two possible values 0 and 1 where the value 1 is given
twice as much weight as the value 0 since p(1) = 2p(0).

Example 2b If I is an indicator random variable for the event A, that is, if

I =
{

1 if A occurs
0 if A does not occur

then
E [I] = 1P(A) + 0P(Ac) = P(A)

Hence, the expectation of the indicator random variable for the event A is just the
probability that A occurs. �

If X is a continuous random variable having probability density function f ,
then, analogous to Equation (2.2), we define the expected value of X by

E [X] =
∫ ∞

−∞
x f (x)dx

Example 2c If the probability density function of X is given by

f (x) =
{

3x2 if 0 < x < 1
0 otherwise

then

E [X] =
∫ 1

0
3x3dx = 3

4
. �

Suppose now that we wanted to determine the expected value not of the random
variable X but of the random variable g(X), where g is some given function. Since
g(X) takes on the value g(x) when X takes on the value x , it seems intuitive that
E [g(X)] should be a weighted average of the possible values g(x) with, for a
given x, the weight given to g(x) being equal to the probability (or probability
density in the continuous case) that X will equal x . Indeed, the preceding can be
shown to be true and we thus have the following result.

2.5 Expectation 13

Proposition If X is a discrete random variable having probability mass
function p(x), then

E [g(X)] =
∑

x

g(x)p(x)

whereas if X is continuous with probability density function f (x), then

E [g(X)] =
∫ ∞

−∞
g(x) f (x)dx

A consequence of the above proposition is the following.

Corollary If a and b are constants, then

E [aX + b] = aE [X] + b

Proof In the discrete case

E [aX + b] =
∑

x

(ax + b)p(x)

= a
∑

x

xp(x) + b
∑

x

p(x)

= aE [X] + b

Since the proof in the continuous case is similar, the result is established. �

It can be shown that expectation is a linear operation in the sense that for any
two random variables X1 and X2

E [X1 + X2] = E [X1] + E [X2]

which easily generalizes to give

E

[
n∑

i=1

Xi

]
=

n∑
i=1

E [Xi]

14 2 Elements of Probability

2.6 Variance

Whereas E [X], the expected value of the random variable X , is a weighted average
of the possible values of X , it yields no information about the variation of these
values. One way of measuring this variation is to consider the average value of the
square of the difference between X and E [X]. We are thus led to the following
definition.

Definition If X is a random variable with mean μ, then the variance of X,
denoted by Var(X), is defined by

Var(X) = E
[
(X − μ)2

]
An alternative formula for Var(X) is derived as follows:

Var(X) = E
[
(X − μ)2

]
= E

[
X 2 − 2μX + μ2

]
= E

[
X 2
]− E [2μX] + E

[
μ2
]

= E
[
X 2
]− 2μE [X] + μ2

= E
[
X 2
]− μ2

That is,

Var(X) = E
[
X 2
]− (E [X])2

A useful identity, whose proof is left as an exercise, is that for any constants
a and b

Var(aX + b) = a2Var(X)

Whereas the expected value of a sum of random variables is equal to the sum
of the expectations, the corresponding result is not, in general, true for variances.
It is, however, true in the important special case where the random variables are
independent. Before proving this let us define the concept of the covariance between
two random variables.

Definition The covariance of two random variables X and Y , denoted Cov(X,
Y), is defined by

Cov(X, Y) = E
[
(X − μx)(Y − μy)

]
where μx = E [X] and μy = E [Y].

2.6 Variance 15

A useful expression for Cov(X , Y) is obtained by expanding the right side of
the above equation and then making use of the linearity of expectation. This yields

Cov(X, Y) = E
[
XY − μx Y − Xμy + μxμy

]
= E [XY] − μx E [Y] − E [X] μy + μxμy

= E [XY] − E [X] E [Y] (2.3)

We now derive an expression for Var(X +Y) in terms of their individual variances
and the covariance between them. Since

E [X + Y] = E [X] + E [Y] = μx + μy

we see that

Var(X + Y) = E
[
(X + Y − μx − μy)

2
]

= E
[
(X − μx)

2 + (Y − μy)
2 + 2(X − μx)(Y − μy)

]
= E

[
(X − μx)

2
]+ E

[
(Y − μy)

2
]+ 2E

[
(X − μx)(Y − μy)

]
= Var(X) + Var(Y) + 2Cov(X, Y) (2.4)

We end this section by showing that the variance of the sum of independent
random variables is equal to the sum of their variances.

Proposition If X and Y are independent random variables then

Cov(X, Y) = 0

and so, from Equation (2.4),

Var(X + Y) = Var(X) + Var(Y)

Proof From Equation (2.3) it follows that we need to show that E [XY] =
E [X] E [Y]. Now in the discrete case,

E [XY] =
∑

j

∑
i

xi y j P{X = xi , Y = y j }

=
∑

j

∑
i

xi y j P{X = xi }P{Y = y j } by independence

=
∑

j

y j P{Y = y j }
∑

i

xi P{X = xi }

= E [Y] E [X]

Since a similar argument holds in the continuous case, the result is proved. �

The correlation between two random variables X and Y , denoted as Corr(X, Y),
is defined by

Corr(X, Y) = Cov(X, Y)√
Var(X)Var(Y)

16 2 Elements of Probability

2.7 Chebyshev’s Inequality and the Laws of Large Numbers

We start with a result known as Markov’s inequality.

Proposition Markov’s Inequality If X takes on only nonnegative
values, then for any value a > 0

P{X � a} � E [X]

a

Proof Define the random variable Y by

Y =
{

a, if X � a
0, if X < a

Because X � 0, it easily follows that

X � Y

Taking expectations of the preceding inequality yields

E [X] � E [Y] = a P{X � a}
and the result is proved. �

As a corollary we have Chebyshev’s inequality, which states that the probability that
a random variable differs from its mean by more than k of its standard deviations
is bounded by 1/k2, where the standard deviation of a random variable is defined
to be the square root of its variance.

Corollary Chebyshev’s Inequality If X is a random variable having
mean μ and variance σ 2, then for any value k > 0,

P{|X − μ| � kσ } � 1

k2

Proof Since (X − μ)2/σ 2 is a nonnegative random variable whose mean is

E

[
(X − μ)2

σ 2

]
= E

[
(X − μ)2

]
σ 2

= 1

we obtain from Markov’s inequality that

P

{
(X − μ)2

σ 2
� k2

}
� 1

k2

The result now follows since the inequality (X −μ)2/σ 2 � k2 is equivalent to the
inequality |X − μ| � kσ . �

2.7 Chebyshev’s Inequality and the Laws of Large Numbers 17

We now use Chebyshev’s inequality to prove the weak law of large numbers,
which states that the probability that the average of the first n terms of a sequence
of independent and identically distributed random variables differs from its mean
by more than ε goes to 0 as n goes to infinity.

Theorem The Weak Law of Large Numbers Let X1, X2, . . . be
a sequence of independent and identically distributed random variables having
mean μ. Then, for any ε > 0,

P

{∣∣∣∣ X1 + · · · + Xn

n
− μ

∣∣∣∣ > ε

}
→ 0 as n → ∞

Proof We give a proof under the additional assumption that the random
variables Xi have a finite variance σ 2. Now

E

[
X1 + · · · + Xn

n

]
= 1

n
(E [X1] + · · · + E [Xn]) = μ

and

Var

(
X1 + · · · + Xn

n

)
= 1

n2
[Var(X1) + · · · + Var(Xn)] = σ 2

n

where the above equation makes use of the fact that the variance of the sum of
independent random variables is equal to the sum of their variances. Hence, from
Chebyshev’s inequality, it follows that for any positive k

P

{∣∣∣∣ X1 + · · · + Xn

n
− μ

∣∣∣∣ � kσ√
n

}
� 1

k2

Hence, for any ε > 0, by letting k be such that kσ/
√

n = ε, that is, by letting
k2 = nε2/σ 2, we see that

P

{∣∣∣∣ X1 + · · · + Xn

n
− μ

∣∣∣∣ � ε

}
� σ 2

nε2

which establishes the result. �

A generalization of the weak law is the strong law of large numbers, which states
that, with probability 1,

lim
n→∞

X1 + · · · + Xn

n
= μ

That is, with certainty, the long-run average of a sequence of independent and
identically distributed random variables will converge to its mean.

18 2 Elements of Probability

2.8 Some Discrete Random Variables

There are certain types of random variables that frequently appear in applications.
In this section we survey some of the discrete ones.

Binomial Random Variables

Suppose that n independent trials, each of which results in a “success” with
probability p, are to be performed. If X represents the number of successes that
occur in the n trials, then X is said to be a binomial random variable with parameters
(n, p). Its probability mass function is given by

Pi ≡ P{X = i} =
(

n
i

)
pi (1 − p)n−i , i = 0, 1, . . . , n (2.5)

where (
n
i

)
= n!

i!(n − i)!

is the binomial coefficient, equal to the number of different subsets of i elements
that can be chosen from a set of n elements.

The validity of Equation (2.5) can be seen by first noting that the probability of
any particular sequence of outcomes that results in i successes and n − i failures is,
by the assumed independence of trials, pi (1 − p)n−i . Equation (2.5) then follows
since there are

(n
i

)
different sequences of the n outcomes that result in i successes

and n − i failures—which can be seen by noting that there are
(n

i

)
different choices

of the i trials that result in successes.
A binomial (1, p) random variable is called a Bernoulli random variable. Since

a binomial (n, p) random variable X represents the number of successes in n
independent trials, each of which results in a success with probability p, we can
represent it as follows:

X =
n∑

i=1

Xi (2.6)

where

Xi =
{

1 if the i th trial is a success
0 otherwise

Now

E [Xi] = P{Xi = 1} = p

Var(Xi) = E
[
X 2

i

]− E([Xi])
2

= p − p2 = p(1 − p)

2.8 Some Discrete Random Variables 19

where the above equation uses the fact that X 2
i = Xi (since 02 = 0 and 12 = 1).

Hence the representation (2.6) yields that, for a binomial (n, p) random variable X ,

E [X] =
n∑

i=1

E [Xi] = np

Var(X) =
n∑

i=1

Var(Xi) since the Xi are independent

= np(1 − p)

The following recursive formula expressing pi+1 in terms of pi is useful when
computing the binomial probabilities:

pi+1 = n!

(n − i − 1)!(i + 1)!
pi+1(1 − p)n−i−1

= n!(n − i)

(n − i)!i!(i + 1)
pi (1 − p)n−i p

1 − p

= n − i

i + 1

p

1 − p
pi

Poisson Random Variables

A random variable X that takes on one of the values 0, 1, 2,… is said to be a Poisson
random variable with parameter λ, λ > 0, if its probability mass function is given
by

pi = P{X = i} = e−λ λi

i!
, i = 0, 1, . . .

The symbol e, defined by e = limn→∞(1 + 1/n)n , is a famous constant in
mathematics that is roughly equal to 2.7183.

Poisson random variables have a wide range of applications. One reason for this
is that such random variables may be used to approximate the distribution of the
number of successes in a large number of trials (which are either independent or
at most “weakly dependent”) when each trial has a small probability of being a
success. To see why this is so, suppose that X is a binomial random variable with
parameters (n, p)—and so represents the number of successes in n independent
trials when each trial is a success with probability p—and let λ = np. Then

P{X = i} = n!

(n − i)!i!
pi (1 − p)n−i

= n!

(n − i)!i!

(
λ

n

)i (
1 − λ

n

)n−i

= n(n − 1) · · · (n − i + 1)

ni

λi

i!

(1 − λ/n)n

(1 − λ/n)i

20 2 Elements of Probability

Now for n large and p small,

(
1 − λ

n

)n

≈ e−λ,
n(n − 1) · · · (n − i + 1)

ni
≈ 1,

(
1 − λ

n

)i

≈ 1

Hence, for n large and p small,

P{X = i} ≈ e−λ λi

i!

Since the mean and variance of a binomial random variable Y are given by

E [Y] = np, Var(Y) = np(1 − p) ≈ np for small p

it is intuitive, given the relationship between binomial and Poisson random
variables, that for a Poisson random variable, X , having parameter λ,

E [X] = Var(X) = λ

An analytic proof of the above is left as an exercise.
To compute the Poisson probabilities we make use of the following recursive

formula:

pi+1

pi
=

e−λλi+1

(i+1)!

e−λλi

i!

= λ

i + 1

or, equivalently,

pi+1 = λ

i + 1
pi , i � 0

Suppose that a certain number, N , of events will occur, where N is a Poisson
random variable with mean λ. Suppose further that each event that occurs will,
independently, be either a type 1 event with probability p or a type 2 event with
probability 1 − p. Thus, if Ni is equal to the number of the events that are type
i, i = 1, 2, then N = N1 + N2. A useful result is that the random variables N1 and
N2 are independent Poisson random variables, with respective means

E [N1] = λp E [N2] = λ(1 − p)

To prove this result, let n and m be nonnegative integers, and consider the joint
probability P{N1 = n, N2 = m}. Because P{N1 = n, N2 = m|N 	= n + m} = 0,
conditioning on whether N = n + m yields

P{N1 = n, N2 = m} = P{N1 = n, N2 = m|N = n + m}P{N = n + m}
= P{N1 = n, N2 = m|N = n + m}e−λ λn+m

(n + m)!

2.8 Some Discrete Random Variables 21

However, given that N = n+m, because each of the n+m events is independently
either a type 1 event with probability p or type 2 with probability 1 − p, it
follows that the number of them that are type 1 is a binomial random variable
with parameters n + m, p. Consequently,

P{N1 = n, N2 = m} =
(

n + m

n

)
pn(1 − p)me−λ λn+m

(n + m)!

= (n + m)!

n!m!
pn(1 − p)me−λpe−λ(1−p) λnλm

(n + m)!

= e−λp (λp)n

n!
e−λ(1−p) (λ(1 − p))m

m!

Summing over m yields that

P{N1 = n} =
∑

m

P{N1 = n, N2 = m}

= e−λp (λp)n

n!

∑
m

e−λ(1−p) (λ(1 − p))m

m!

= e−λp (λp)n

n!

Similarly,

P{N2 = m} = e−λ(1−p) (λ(1 − p))m

m!
thus verifying that N1 and N2 are indeed independent Poisson random variables
with respective means λp and λ(1 − p).

The preceding result generalizes when each of the Poisson number of
events is independently one of the types 1, . . . , r , with respective probabilities
p1, . . . , pr ,

∑r
i=1 pi = 1. With Ni equal to the number of the events that are type

i, i = 1, . . . , r , it is similarly shown that N1, . . . , Nr are independent Poisson
random variables, with respective means

E [Ni] = λpi , i = 1, . . . , r

Geometric Random Variables

Consider independent trials, each of which is a success with probability p. If X
represents the number of the first trial that is a success, then

P{X = n} = p(1 − p)n−1, n � 1 (2.7)

which is easily obtained by noting that in order for the first success to occur on the
nth trial, the first n − 1 must all be failures and the nth a success. Equation (2.7)
now follows because the trials are independent.

22 2 Elements of Probability

A random variable whose probability mass function is given by (2.7) is said to
be a geometric random variable with parameter p. The mean of the geometric is
obtained as follows:

E [X] =
∞∑

n=1

np(1 − p)n−1 = 1

p

where the above equation made use of the algebraic identity, for 0 < x < 1,

∞∑
n=1

nxn−1 = d

dx

(∞∑
n=0

xn

)
= d

dx

(
1

1 − x

)
= 1

(1 − x)2

It is also not difficult to show that

Var(X) = 1 − p

p2

The Negative Binomial Random Variable

If we let X denote the number of trials needed to amass a total of r successes
when each trial is independently a success with probability p, then X is said to be
a negative binomial, sometimes called a Pascal, random variable with parameters
p and r . The probability mass function of such a random variable is given by the
following:

P{X = n} =
(

n − 1
r − 1

)
pr (1 − p)n−r , n � r (2.8)

To see why Equation (2.8) is valid note that in order for it to take exactly n trials to
amass r successes, the first n −1 trials must result in exactly r −1 successes—and
the probability of this is

(n−1
r−1

)
pr−1(1 − p)n−r —and then the nth trial must be a

success—and the probability of this is p.
If we let Xi , i = 1, . . . , r , denote the number of trials needed after the (i − 1)st

success to obtain the i th success, then it is easy to see that they are independent
geometric random variables with common parameter p. Since

X =
r∑

i=1

Xi

we see that

E [X] =
r∑

i=1

E [Xi] = r

p

Var(X) =
r∑

i=1

Var(Xi) = r(1 − p)

p2

where the preceding made use of the corresponding results for geometric random
variables.

2.9 Continuous Random Variables 23

Hypergeometric Random Variables

Consider an urn containing N + M balls, of which N are light colored and M are
dark colored. If a sample of size n is randomly chosen [in the sense that each of
the

(N+M
n

)
subsets of size n is equally likely to be chosen] then X , the number of

light colored balls selected, has probability mass function

P{X = i} =

(
N
i

)(
M

n − i

)
(

N + M
n

)

A random variable X whose probability mass function is given by the preceding
equation is called a hypergeometric random variable.

Suppose that the n balls are chosen sequentially. If we let

Xi =
{

1 if the i th selection is light
0 otherwise

then

X =
n∑

i=1

Xi (2.9)

and so

E [X] =
n∑

i=1

E [Xi] = nN

N + M

where the above equation uses the fact that, by symmetry, the i th selection is equally
likely to be any of the N + M balls, and so E [Xi] = P{Xi = 1} = N/(N + M).

Since the Xi are not independent (why not?), the utilization of the representation
(2.9) to compute Var(X) involves covariance terms. The end product can be shown
to yield the result

Var(X) = nN M

(N + M)2

(
1 − n − 1

N + M − 1

)

2.9 Continuous Random Variables

In this section we consider certain types of continuous random variables.

24 2 Elements of Probability

Uniformly Distributed Random Variables

A random variable X is said to be uniformly distributed over the interval (a, b), a <

b, if its probability density function is given by

f (x) =
{

1
b−a if a < x < b

0 otherwise

In other words, X is uniformly distributed over (a, b) if it puts all its mass on that
interval and it is equally likely to be “near” any point on that interval.

The mean and variance of a uniform (a, b) random variable are obtained as
follows:

E [X] = 1

b − a

∫ b

a
xdx = b2 − a2

2(b − a)
= b + a

2

E
[
X 2
] = 1

b − a

∫ b

a
x2dx = b3 − a3

3(b − a)
= a2 + b2 + ab

3

and so

Var(X) = 1

3
(a2 + b2 + ab) − 1

4
(a2 + b2 + 2ab) = 1

12
(b − a)2.

Thus, for instance, the expected value is, as one might have expected, the
midpoint of the interval (a, b).

The distribution function of X is given, for a < x < b, by

F(x) = P{X � x} =
∫ x

a
(b − a)−1dx = x − a

b − a

Normal Random Variables

A random variable X is said to be normally distributed with mean μ and variance
σ 2 if its probability density function is given by

f (x) = 1√
2πσ

e−(x−μ)2/2σ2
, −∞ < x < ∞

The normal density is a bell-shaped curve that is symmetric about μ

(see Figure 2.1).
It is not difficult to show that the parameters μ and σ 2 equal the expectation and

variance of the normal. That is,

E [X] = μ and Var(X) = σ 2

2.9 Continuous Random Variables 25

 − 3σμ + 3σμ −σμ +σμμ

1
2 σπ

Figure 2.1. The normal density function.

An important fact about normal random variables is that if X is normal with
mean μ and variance σ 2, then for any constants a and b, aX + b is normally
distributed with mean aμ + b and variance a2σ 2. It follows from this that if X is
normal with mean μ and variance σ 2, then

Z = X − μ

σ

is normal with mean 0 and variance 1. Such a random variable Z is said to have a
standard (or unit) normal distribution. Let � denote the distribution function of a
standard normal random variable; that is,

�(x) = 1√
2π

∫ x

−∞
e−x2/2dx, −∞ < x < ∞

The result that Z = (X−μ)/σ has a standard normal distribution when X is normal
with mean μ and variance σ 2 is quite useful because it allows us to evaluate all
probabilities concerning X in terms of �. For example, the distribution function
of X can be expressed as

F(x) = P{X � x}
= P

{
X − μ

σ
� x − μ

σ

}

= vP

{
Z � x − μ

σ

}

= �

(
x − μ

σ

)

26 2 Elements of Probability

1 − a

0

a

za

Figure 2.2. P{Z > za} = a.

The value of �(x) can be determined either by looking it up in a table or by writing
a computer program to approximate it.

For a in the interval (0, 1), let za be such that

P{Z > za} = 1 − �(za) = a

That is, a standard normal will exceed za with probability a (see Figure 2.2). The
value of za can be obtained from a table of the values of �. For example, since

�(1.64) = 0.95, �(1.96) = 0.975, �(2.33) = 0.99

we see that
z.05 = 1.64, z.025 = 1.96, z.01 = 2.33

The wide applicability of normal random variables results fromone of the most
important theorems of probability theory—the central limit theorem, which asserts
that the sum of a large number of independent random variables has approximately
a normal distribution. The simplest form of this remarkable theorem is as follows.

The Central Limit Theorem Let X1, X2, . . . be a sequence of independent
and identically distributed random variables having finite mean μ and finite
variance σ 2. Then

lim
n→∞ P

{
X1 + · · · + Xn − nμ

σ
√

n
< x

}
= �(x)

Exponential Random Variables

A continuous random variable having probability density function

f (x) = λe−λx , 0 < x < ∞
for some λ > 0 is said to be an exponential random variable with parameter λ. Its
cumulative distribution is given by

F(x) =
∫ x

0
λe−λx dx = 1 − e−λx , 0 < x < ∞

2.9 Continuous Random Variables 27

It is easy to verify that the expected value and variance of such a random variable
are as follows:

E [X] = 1

λ
and Var(X) = 1

λ2

The key property of exponential random variables is that they possess the
“memoryless property,” where we say that the nonnegative random variable X
is memoryless if

P{X > s + t |X > s} = P{X > t} for all s, t � 0 (2.10)

To understand why the above is called the memoryless property, imagine that X
represents the lifetime of some unit, and consider the probability that a unit of age
s will survive an additional time t . Since this will occur if the lifetime of the unit
exceeds t + s given that it is still alive at time s, we see that

P{additional life of an item of age s exceeds t} = P{X > s + t |X > s}
Thus, Equation (2.10) is a statement of fact that the distribution of the remaining
life of an item of age s does not depend on s. That is, it is not necessary to remember
the age of the unit to know its distribution of remaining life.

Equation (2.10) is equivalent to

P{X > s + t} = P{X > s}P{X > t}
As the above equation is satisfied whenever X is an exponential random variable—
since, in this case, P{X > x} = e−λx —we see that exponential random variables
are memoryless (and indeed it is not difficult to show that they are the only
memoryless random variables).

Another useful property of exponential random variables is that they remain
exponential when multiplied by a positive constant. To see this suppose that X is
exponential with parameter λ, and let c be a positive number. Then

P{cX � x} = P
{

X � x

c

}
= 1 − e−λx/c

which shows that cX is exponential with parameter λ/c.
Let X1, . . . , Xn be independent exponential random variables with respective

rates λ1, . . . , λn . A useful result is that min(X1, . . . , Xn) is exponential with rate∑
i λi and is independent of which one of the Xi is the smallest. To verify this, let

M = min(X1, . . . , Xn). Then,

P{X j = min
i

Xi |M > t} = P{X j − t = min
i

(Xi − t)|M > t}
= P{X j − t = min

i
(Xi − t)|Xi > t, i = 1, . . . , n}

= P{X j = min
i

Xi }

28 2 Elements of Probability

The final equality follows because, by the lack of memory property of exponential
random variables, given that Xi exceeds t , the amount by which it exceeds
it is exponential with rate λi . Consequently, the conditional distribution of
X1 − t, . . . , Xn − t given that all the Xi exceed t is the same as the unconditional
distribution of X1, . . . , Xn . Thus, M is independent of which of the Xi is the
smallest.

The result that the distribution of M is exponential with rate
∑

i λi follows from

P{M > t} = P{Xi > t, i = 1, . . . , n} =
n∏

i=1

P{Xi > t} = e−∑n
i=1 λi t

The probability that X j is the smallest is obtained from

P{X j = M} =
∫

P{X j = M|X j = t}λ j e
−λ j t dt

=
∫

P{Xi > t, i 	= j |X j = t}λ j e
−λ j t dt

=
∫

P{Xi > t, i 	= j}λ j e
−λ j t dt

=
∫ (∏

i 	= j

e−λi t

)
λ j e

−λ j t dt

= λ j

∫
e−∑i λi t dt

= λ j∑
i λi

The Poisson Process and Gamma Random Variables

Suppose that “events” are occurring at random time points and let N (t) denote
the number of events that occur in the time interval [0, t]. These events are said to
constitute a Poisson process having rate λ, λ > 0, if

(a) N (0) = 0.
(b) The numbers of events occurring in disjoint time intervals are independent.
(c) The distribution of the number of events that occur in a given interval depends

only on the length of the interval and not on its location.
(d) limh→0

P{N (h)=1}
h = λ.

(e) limh→0
P{N (h)�2}

h = 0.

Thus Condition (a) states that the process begins at time 0. Condition (b), the
independent increment assumption, states that the number of events by time t
[i.e., N (t)] is independent of the number of events that occur between t and t + s

2.9 Continuous Random Variables 29

0 t
n (n−1) tt

n
2t
n

3t
n

Figure 2.3. The Interval [0, t].

[i.e., N (t + s) − N (t)]. Condition (c), the stationary increment assumption, states
that the probability distribution of N (t + s) − N (t) is the same for all values of t .
Conditions (d) and (e) state that in a small interval of length h, the probability of
one event occurring is approximately λh, whereas the probability of two or more
is approximately 0.

We now argue that these assumptions imply that the number of events occurring
in an interval of length t is a Poisson random variable with mean λt . To do so,
consider the interval [0, t], and break it up into n nonoverlapping subintervals of
length t/n (Figure 2.3). Consider first the number of these subintervals that contain
an event. As each subinterval independently [by Condition (b)] contains an event
with the same probability [by Condition (c)], which is approximately equal to
λt/n, it follows that the number of such intervals is a binomial random variable
with parameters n and p ≈ λt/n. Hence, by the argument yielding the convergence
of the binomial to the Poisson, we see by letting n → ∞ that the number of such
subintervals converges to a Poisson random variable with mean λt . As it can be
shown that Condition (e) implies that the probability that any of these subintervals
contains two or more events goes to 0 as n → ∞, it follows that N (t), the number
of events that occur in [0, t], is a Poisson random variable with mean λt .

For a Poisson process let X1 denote the time of the first event. Furthermore, for
n > 1, let Xn denote the elapsed time between the (n − 1)st and the nth event.
The sequence {Xn, n = 1, 2, . . .} is called the sequence of interarrival times. For
instance, if X1 = 5 and X2 = 10, then the first event of the Poisson process will
occur at time 5 and the second at time 15.

We now determine the distribution of the Xn . To do so, we first note that the
event {X1 > t} takes place if and only if no events of the Poisson process occur in
the interval [0, t]; thus

P{X1 > t} = P{N (t) = 0} = e−λt

Hence, X1 has an exponential distribution with mean 1/λ. To obtain the distribution
of X2, note that

P{X2 > t |X1 = s} = P{0 events in (s, s + t)|X1 = s}
= P{0 events in (s, s + t)}
= e−λt

where the last two equations followed from independent and stationary increments.
Therefore, from the foregoing, we conclude that X2 is also an exponential random
variable with mean 1/λ and, furthermore, that X2 is independent of X1. Repeating
the same argument yields:

30 2 Elements of Probability

Proposition The interarrival times X1, X2, . . . are independent and
identically distributed exponential random variables with parameter λ.

Let Sn = ∑n
i=1 Xi denote the time of the nth event. Since Sn will be less than

or equal to t if and only if there have been at least n events by time t , we see that

P{Sn � t} = P{N (t) � n}
=

∞∑
j=n

e−λt (λt) j

j!

Since the left-hand side is the cumulative distribution function of Sn , we obtain,
upon differentiation, that the density function of Sn—call it fn(t)—is given by

fn(t) =
∞∑

j=n

jλe−λt (λt) j−1

j!
−

∞∑
j=n

λe−λt (λt) j

j!

=
∞∑

j=n

λe−λt (λt) j−1

(j − 1)!
−

∞∑
j=n

λe−λt (λt) j

j!

= λe−λt (λt)n−1

(n − 1)!

Definition A random variable having probability density function

f (t) = λe−λt (λt)n−1

(n − 1)!
, t > 0

is said to be a gamma random variable with parameters (n, λ).

Thus we see that Sn , the time of the nth event of a Poisson process having rate
λ, is a gamma random variable with parameters (n, λ). In addition, we obtain from
the representation Sn = ∑n

i=1 Xi and the previous proposition, which stated that
these Xi are independent exponentials with rate λ, the following corollary.

Corollary The sum of n independent exponential random variables, each
having parameter λ, is a gamma random variable with parameters (n, λ).

The Nonhomogeneous Poisson Process

From a modeling point of view the major weakness of the Poisson process is its
assumption that events are just as likely to occur in all intervals of equal size. A
generalization, which relaxes this assumption, leads to the nonhomogeneous or
nonstationary process.

If “events” are occurring randomly in time, and N (t) denotes the number
of events that occur by time t , then we say that {N (t), t � 0} constitutes a
nonhomogeneous Poisson process with intensity function λ(t), t � 0, if

2.10 Conditional Expectation and Conditional Variance 31

(a) N (0) = 0.
(b) The numbers of events that occur in disjoint time intervals are independent.
(c) limh→0 P{exactly 1 event between t and t + h}/h = λ(t).
(d) limh→0 P{2 or more events between t and t + h}/h = 0.

The function m(t) defined by

m(t) =
∫ t

0
λ(s)ds, t � 0

is called the mean-value function. The following result can be established.

Proposition N (t + s) − N (t) is a Poisson random variable with mean
m(t + s) − m(t).

The quantity λ(t), called the intensity at time t , indicates how likely it is that an
event will occur around the time t . [Note that when λ(t) ≡ λ the nonhomogeneous
reverts to the usual Poisson process.] The following proposition gives a useful way
of interpreting a nonhomogeneous Poisson process.

Proposition Suppose that events are occurring according to a Poisson process
having rate λ, and suppose that, independently of anything that came before, an
event that occurs at time t is counted with probability p(t). Then the process
of counted events constitutes a nonhomogeneous Poisson process with intensity
function λ(t) = λp(t).

Proof This proposition is proved by noting that the previously given conditions
are all satisfied. Conditions (a), (b), and (d) follow since the corresponding result
is true for all (not just the counted) events. Condition (c) follows since

P{1 counted event between t and t + h}
= P{1 event and it is counted}

+P{2 or more events and exactly 1 is counted}
≈ λhp(t)

2.10 Conditional Expectation and Conditional Variance

If X and Y are jointly discrete random variables, we define E [X |Y = y], the
conditional expectation of X given that Y = y, by

E [X |Y = y] =
∑

x

x P{X = x |Y = y}

=
∑

x x P{X = x, Y = y}
P{Y = y}

In other words, the conditional expectation of X , given that Y = y, is defined
like E [X] as a weighted average of all the possible values of X , but now with the

32 2 Elements of Probability

weight given to the value x being equal to the conditional probability that X equals
x given that Y equals y.

Similarly, if X and Y are jointly continuous with joint density function f (x, y),
we define the conditional expectation of X , given that Y = y, by

E [X |Y = y] =
∫

x f (x, y)dx∫
f (x, y)dx

Let E [X |Y] denote that function of the random variable Y whose value at Y = y
is E [X |Y = y]; and note that E [X |Y] is itself a random variable. The following
proposition is quite useful.

Proposition
E [E [X |Y]] = E [X] (2.11)

If Y is a discrete random variable, then Equation (2.11) states that

E [X] =
∑

y

E [X |Y = y] P{Y = y}

whereas if Y is continuous with density g, then (2.11) states

E [X] =
∫

E [X |Y = y] g(y)dy

We now give a proof of the preceding proposition when X and Y are discrete:∑
y
E [X |Y = y] P{Y = y} =

∑
y

∑
x

x P{X = x |Y = y}P{Y = y}

=
∑

y

∑
x

x P{X = x, Y = y}

=
∑

x

x
∑

y

P{X = x, Y = y}

=
∑

x

x P{X = x}

= E [X]

We can also define the conditional variance of X , given the value of Y , as follows:

Var(X |Y) = E
[
(X − E [X |Y])2|Y]

That is, Var(X |Y) is a function of Y , which at Y = y is equal to the variance of
X given that Y = y. By the same reasoning that yields the identity Var(X) =
E
[
X 2
]− (E [X])2 we have that

Var(X |Y) = E
[
X 2|Y]− (E [X |Y])2

Exercises 33

Taking expectations of both sides of the above equation gives

E [Var(X |Y)] = E
[
E
[
X 2|Y]]− E

[
(E [X |Y])2

]
= E

[
X 2
]− E

[
(E [X |Y])2

]
(2.12)

Also, because E [E [X |Y]] = E [X], we have that

Var(E [X |Y]) = E
[
(E [X |Y])2

]− (E [X])2 (2.13)

Upon adding Equations (2.12) and (2.13) we obtain the following identity, known
as the conditional variance formula.

The Conditional Variance Formula

Var(X) = E [Var(X |Y)] + Var(E [X |Y])

Exercises

1.

(a) For any events A and B show that

A ∪ B = A ∪ Ac B

B = AB ∪ Ac B

(b) Show that
P(A ∪ B) = P(A) + P(B) − P(AB)

2. Consider an experiment that consists of six horses, numbered 1 through 6,
running a race, and suppose that the sample space is given by

S = { all orderings of (1, 2, 3, 4, 5, 6)}
Let A denote the event that the number 1 horse is among the top three finishers,
let B denote the event that the number 2 horse comes in second, and let C denote
the event that the number 3 horse comes in third.

(a) Describe the event A ∪ B. How many outcomes are contained in this
event?

(b) How many outcomes are contained in the event AB?
(b) How many outcomes are contained in the event ABC?
(c) How many outcomes are contained in the event A ∪ BC?

3. A couple has two children. What is the probability that both are girls given
that the elder is a girl? Assume that all four possibilities are equally likely.

34 2 Elements of Probability

4. The king comes from a family of two children. What is the probability that
the other child is his brother?

5. The random variable X takes on one of the values 1, 2, 3, 4 with probabilities

P{X = i} = ic, i = 1, 2, 3, 4

for some value c. Find P{2 ≤ X ≤ 3}.

6. The continuous random variable X has a probability density function given by

f (x) = cx, 0 < x < 1

Find P{X > 1
2 }.

7. If X and Y have a joint probability density function specified by

f (x, y) = 2e−(x+2y), 0 < x < ∞, 0 < y < ∞
Find P{X < Y }.

8. Find the expected value of the random variable specified in Exercise 5.

9. Find E [X] for the random variable of Exercise 6.

10. There are 10 different types of coupons and each time one obtains a coupon
it is equally likely to be any of the 10 types. Let X denote the number of
distinct types contained in a collection of N coupons, and find E [X]. [Hint:
For i = 1, . . . , 10 let

Xt =
{

1 if a type i coupon is among the N
0 otherwise

and make use of the representation X = ∑10
i=1 Xi .

11. A die having six sides is rolled. If each of the six possible outcomes is equally
likely, determine the variance of the number that appears.

12. Suppose that X has probability density function

f (x) = cex , 0 < x < 1

Determine Var(X).

Exercises 35

13. Show that Var(aX + b) = a2Var(X).

14. Suppose that X , the amount of liquid apple contained in a container of
commercial apple juice, is a random variable having mean 4 grams.

(a) What can be said about the probability that a given container contains
more than 6 grams of liquid apple?

(b) If Var(X) = 4(grams)2, what can be said about the probability that a
given container will contain between 3 and 5 grams of liquid apple?

15. An airplane needs at least half of its engines to safely complete its mission. If
each engine independently functions with probability p, for what values of p
is a three-engine plane safer than a five-engine plane?

16. For a binomial random variable X with parameters (n, p), show that P{X = i}
first increases and then decreases, reaching its maximum value when i is the
largest integer less than or equal to (n + 1)p.

17. If X and Y are independent binomial random variables with respective
parameters (n, p) and (m, p), argue, without any calculations, that X + Y
is binomial with parameters (n + m, p).

18. Explain why the following random variables all have approximately a Poisson
distribution:

(a) The number of misprints in a given chapter of this book.
(b) The number of wrong telephone numbers dialed daily.
(c) The number of customers that enter a given post office on a given day.

19. If X is a Poisson random variable with parameter λ, show that

(a) E [X] = λ.
(b) Var(X) = λ.

20. Let X and Y be independent Poisson random variables with respective
parameters λ1 and λ2. Use the result of Exercise 17 to heuristically argue
that X + Y is Poisson with parameter λ1 + λ2. Then give an analytic proof of
this. [Hint:

P{X + Y = k} =
k∑

i=0

P{X = i, Y = k − i} =
k∑

i=0

P{X = i}P{Y = k − i}]

21. Explain how to make use of the relationship

pi+1 = λ

i + 1
pi

to compute efficiently the Poisson probabilities.

36 2 Elements of Probability

22. Find P{X > n} when X is a geometric random variable with parameter p.

23. Two players play a certain game until one has won a total of five games. If
player A wins each individual game with probability 0.6, what is the probability
she will win the match?

24. Consider the hypergeometric model of Section 2.8, and suppose that the white
balls are all numbered. For i = 1, . . . , N let

Yi =
{

1 if white ball numbered i is selected
0 otherwise

Argue that X = ∑N
i=1 Y , and then use this representation to determine E [X].

Verify that this checks with the result given in Section 2.8.

25. The bus will arrive at a time that is uniformly distributed between 8 and 8:30
a.m. If we arrive at 8 a.m., what is the probability that we will wait between 5
and 15 minutes?

26. For a normal random variable with parameters μ and σ 2 show that

(a) E [X] = μ.
(b) Var(X) = σ 2.

27. Let X be a binomial random variable with parameters (n, p). Explain why

P

{
X − np√
np(1 − p)

≤ x

}
≈ 1√

2π

∫ x

−∞
e−x2/2dx

when n is large.

28. If X is an exponential random variable with parameter λ, show that

(a) E [X] = 1/λ.
(b) Var(X) = 1/λ2.

29. Persons A, B, and C are waiting at a bank having two tellers when it opens
in the morning. Persons A and B each go to a teller and C waits in line. If
the time it takes to serve a customer is an exponential random variable with
parameter λ, what is the probability that C is the last to leave the bank? [Hint:
No computations are necessary.]

30. Let X and Y be independent exponential random variables with respective
rates λ and μ. Is max (X, Y) an exponential random variable?

Exercises 37

31. Consider a Poisson process in which events occur at a rate 0.3 per hour. What
is the probability that no events occur between 10 a.m. and 2 p.m.?

32. For a Poisson process with rate λ, find P{N (s) = k|N (t) = n} when s < t .

33. Repeat Exercise 32 for s > t .

34. A random variable X having density function

f (x) = λe−λx(λx)α−1

�(α)
, x > 0

is said to have gamma distribution with parameters α > 0, λ > 0, where
�(α) is the gamma function defined by

�(α) =
∫ ∞

0
e−x xα−1dx, α > 0

(a) Show that the preceding is a density function. That is, show that it is
nonnegative and integrates to 1.

(b) Use integration by parts to show that

�(α + 1) = α�(α)

(c) Show that �(n) = (n − 1)!, n � 1
(d) Find E[X].
(e) Find Var(X).

35. A random variable X having density function

f (x) = xa−1(1 − x)b−1

B(a, b)
, 0 < x < 1

is said to have a beta distribution with parameters a > 0, b > 0, where
B(a, b) is the beta function defined by

B(a, b) =
∫ 1

0
xα−1(1 − x)b−1dx

It can be shown that

B(a, b) = �(a)�(b)

�(a + b)

where � is the gamma function. Show that E [X] = a
a+b .

38 2 Elements of Probability

36. An urn contains four white and six black balls. A random sample of size 4 is
chosen. Let X denote the number of white balls in the sample. An additional
ball is now selected from the remaining six balls in the urn. Let Y equal 1 if
this ball is white and 0 if it is black. Find

(a) E [Y |X = 2].
(b) E [X |Y = 1].
(c) Var(Y |X = 0).
(d) Var(X |Y = 1).

37. If X and Y are independent and identically distributed exponential random
variables, show that the conditional distribution of X , given that X + Y = t ,
is the uniform distribution on (0, t).

38. Let U be uniform on (0,1). Show that min(U, 1 − U) is uniform on (0, 1/2),
and that max(U, 1 − U) is uniform on (1/2, 1).

Bibliography

Feller, W., An Introduction to Probability Theory and Its Applications, 3rd ed. Wiley, New
York, 1968.

Ross, S. M., A First Course in Probability, 9th ed. Prentice Hall, New Jersey, 2013.
Ross, S. M., Introduction to Probability Models, 10th ed. Academic Press, New York, 2010.

3Random Numbers

Introduction

The building block of a simulation study is the ability to generate random numbers,
where a random number represents the value of a random variable uniformly
distributed on (0, 1). In this chapter we explain how such numbers are computer
generated and also begin to illustrate their uses.

3.1 Pseudorandom Number Generation

Whereas random numbers were originally either manually or mechanically
generated, by using such techniques as spinning wheels, or dice rolling, or card
shuffling, the modern approach is to use a computer to successively generate
pseudorandom numbers. These pseudorandom numbers constitute a sequence
of values, which, although they are deterministically generated, have all the
appearances of being independent uniform (0, 1) random variables.

One of the most common approaches to generating pseudorandom numbers
starts with an initial value x0, called the seed, and then recursively computes
successive values xn, n � 1, by letting

xn = axn−1 modulo m (3.1)

where a and m are given positive integers, and where the above means that axn−1 is
divided by m and the remainder is taken as the value of xn . Thus, each xn is either
0, 1, . . . , m −1 and the quantity xn/m—called a pseudorandom number—is taken
as an approximation to the value of a uniform (0, 1) random variable.

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00003-6
© 2013 Elsevier Inc. All rights reserved. 39

http://dx.doi.org/10.1016/B978-0-12-415825-2.00003-6

40 3 Random Numbers

The approach specified by Equation (3.1) to generate random numbers is called
the multiplicative congruential method. Since each of the numbers xn assumes one
of the values 0, 1, . . . , m − 1, it follows that after some finite number (of at most
m) of generated values a value must repeat itself; and once this happens the whole
sequence will begin to repeat. Thus, we want to choose the constants a and m so
that, for any initial seed x0, the number of variables that can be generated before
this repetition occurs is large.

In general the constants a and m should be chosen to satisfy three criteria:

1. For any initial seed, the resultant sequence has the “appearance” of being a
sequence of independent uniform (0, 1) random variables.

2. For any initial seed, the number of variables that can be generated before
repetition begins is large.

3. The values can be computed efficiently on a digital computer.

A guideline that appears to be of help in satisfying the above three conditions
is that m should be chosen to be a large prime number that can be fitted to the
computer word size. For a 32-bit word machine (where the first bit is a sign bit) it
has been shown that the choices of m = 231 − 1 and a = 75 = 16, 807 result in
desirable properties. (For a 36-bit word machine the choices of m = 235 − 31 and
a = 55 appear to work well.)

Another generator of pseudorandom numbers uses recursions of the type

xn = (axn−1 + c) modulo m

Such generators are called mixed congruential generators (as they involve both an
additive and a multiplicative term). When using generators of this type, one often
chooses m to equal the computer’s word length, since this makes the computation
of (axn−1 + c) modulo m—that is, the division of axn−1 + c by m—quite efficient.

As our starting point in the computer simulation of systems we suppose that
we can generate a sequence of pseudorandom numbers which can be taken as an
approximation to the values of a sequence of independent uniform (0, 1) random
variables. That is, we do not explore the interesting theoretical questions, which
involve material outside the scope of this text, relating to the construction of “good”
pseudorandom number generators. Rather, we assume that we have a “black box”
that gives a random number on request.

3.2 Using Random Numbers to Evaluate Integrals

One of the earliest applications of random numbers was in the computation of
integrals. Let g(x) be a function and suppose we wanted to compute θ where

θ =
∫ 1

0
g(x) dx

3.2 Using Random Numbers to Evaluate Integrals 41

To compute the value of θ , note that if U is uniformly distributed over (0, 1), then
we can express θ as

θ = E [g(U)]

If U1, . . . , Uk are independent uniform (0, 1) random variables, it thus follows
that the random variables g(U1), . . . , g(Uk) are independent and identically
distributed random variables having mean θ . Therefore, by the strong law of large
numbers, it follows that, with probability 1,

k∑
i=1

g(Ui)

k
→ E [g(U)] = θ as k → ∞

Hence we can approximate θ by generating a large number of random numbers
ui and taking as our approximation the average value of g(ui). This approach to
approximating integrals is called the Monte Carlo approach.

If we wanted to compute

θ =
∫ b

a
g(x) dx

then, by making the substitution y = (x − a)/(b − a), dy = dx/(b − a), we see
that

θ =
∫ 1

0
g(a + [b − a] y)(b − a) dy

=
∫ 1

0
h(y) dy

where h(y) = (b−a)g(a+[b − a] y). Thus, we can approximate θ by continually
generating random numbers and then taking the average value of h evaluated at
these random numbers.

Similarly, if we wanted

θ =
∫ ∞

0
g(x) dx

we could apply the substitution y = 1/(x + 1), dy = −dx/(x + 1)2 = −y2 dx ,
to obtain the identity

θ =
∫ 1

0
h(y) dy

where

h(y) =
g
(

1
y − 1

)
y2

42 3 Random Numbers

The utility of using random numbers to approximate integrals becomes more
apparent in the case of multidimensional integrals. Suppose that g is a function
with an n-dimensional argument and that we are interested in computing

θ =
∫ 1

0

∫ 1

0
. . .

∫ 1

0
g(x1, . . . , xn) dx1 dx2 · · · dxn

The key to the Monte Carlo approach to estimate θ lies in the fact that θ can be
expressed as the following expectation:

θ = E [g(U1, . . . , Un)]

where U1, . . . , Un are independent uniform (0, 1) random variables. Hence, if
we generate k independent sets, each consisting of n independent uniform (0, 1)
random variables

U 1
1 , . . . , U 1

n

U 2
1 , . . . , U 2

n

...

U k
1 , . . . , U k

n

then, since the random variables g(U i
1, . . . , U i

n), i = 1, . . . , k, are all independent
and identically distributed random variables with mean θ , we can estimate θ by∑k

i=1 g(U i
1, . . . , U i

n)/k.
For an application of the above, consider the following approach to

estimating π .

Example 3a The Estimation of π Suppose that the random vector
(X, Y) is uniformly distributed in the square of area 4 centered at the origin. That
is, it is a random point in the region specified in Figure 3.1. Let us consider now the
probability that this random point in the square is contained within the inscribed
circle of radius 1 (see Figure 3.2). Note that since (X, Y) is uniformly distributed
in the square it follows that

P{(X, Y) is in the circle} = P{X 2 + Y 2 � 1}
= Area of the circle

Area of the square
= π

4

Hence, if we generate a large number of random points in the square, the proportion
of points that fall within the circle will be approximately π/4. Now if X and Y were
independent and both were uniformly distributed over (−1, 1), their joint density
would be

f (x, y) = f (x) f (y)

= 1

2
· 1

2

= 1

4
, −1 � x � 1, −1 � y � 1

3.2 Using Random Numbers to Evaluate Integrals 43

(−1, 1)

(1, −1)(−1, −1)

(1, 1)

= (0, 0)

Figure 3.1. Square.

(−1, 1)

(1, −1)(−1, −1)

(1, 1)

= (0, 0)

Figure 3.2. Circle within Square.

Since the density function of (X, Y) is constant in the square, it thus follows (by
definition) that (X, Y) is uniformly distributed in the square. Now if U is uniform
on (0, 1) then 2U is uniform on (0, 2), and so 2U − 1 is uniform on (−1, 1).
Therefore, if we generate random numbers U1 and U2, set X = 2U1 − 1 and
Y = 2U2 − 1, and define

I =
{

1 if X 2 + Y 2 � 1
0 otherwise

44 3 Random Numbers

then
E [I] = P{X 2 + Y 2 � 1} = π

4
Hence we can estimate π/4 by generating a large number of pairs of
random numbers u1, u2 and estimating π/4 by the fraction of pairs for which
(2u1 − 1)2 + (2u2 − 1)2 � 1. �

Thus, random number generators can be used to generate the values of uniform
(0, 1) random variables. Starting with these random numbers we show in Chapters
4 and 5 how we can generate the values of random variables from arbitrary
distributions. With this ability to generate arbitrary random variables we will be
able to simulate a probability system—that is, we will be able to generate, according
to the specified probability laws of the system, all the random quantities of this
system as it evolves over time.

Exercises

1. If x0 = 5 and
xn = 3xn−1 mod 150

find x1, . . . , x10.
2. If x0 = 3 and

xn = (5xn−1 + 7) mod 200

find x1, . . . , x10.

In Exercises 3–9 use simulation to approximate the following integrals.
Compare your estimate with the exact answer if known.

3.
∫ 1

0 exp{ex} dx

4.
∫ 1

0 (1 − x2)3/2 dx

5.
∫ 2

−2 ex+x2
dx

6.
∫∞

0 x(1 + x2)−2 dx

7.
∫∞

−∞ e−x2
dx

8.
∫ 1

0

∫ 1
0 e(x+y)2

dy dx

9.
∫∞

0

∫ x
0 e−(x+y) dy dx

[Hint: Let Iy(x) =
{

1 if y < x
0 if y � x

and use this function to equate the integral

to one in which both terms go from 0 to ∞.]
10. Use simulation to approximate Cov(U, eU), where U is uniform on (0, 1).

Compare your approximation with the exact answer.

Bibliography 45

11. Let U be uniform on (0, 1). Use simulation to approximate the following:

(a) Corr
(

U,
√

1 − U 2
)

.

(b) Corr
(

U 2,
√

1 − U 2
)

.

12. For uniform (0, 1) random variables U1, U2, . . . define

N = Minimum

{
n:

n∑
i=1

Ui > 1

}

That is, N is equal to the number of random numbers that must be summed to
exceed 1.

(a) Estimate E [N] by generating 100 values of N.
(b) Estimate E [N] by generating 1000 values of N.
(c) Estimate E [N] by generating 10,000 values of N.
(d) What do you think is the value of E [N]?

13. Let Ui , i � 1, be random numbers. Define N by

N = Maximum

{
n:

n∏
i=1

Ui � e−3

}

where
∏0

i=1 Ui ≡ 1.

(a) Find E [N] by simulation.
(b) Find P{N = i}, for i = 0, 1, 2, 3, 4, 5, 6, by simulation.

14. With x1 = 23, x2 = 66, and

xn = 3xn−1 + 5xn−2 mod(100), n � 3

we will call the sequence un = xn/100, n � 1, the text’s random number
sequence. Find its first 14 values.

Bibliography

Knuth, D., The Art of Computer Programming, Vol. 2, 2nd ed., Seminumerical Algorithms.
Addison-Wesley, Reading, MA, 2000.

L’Ecuyer, P., “Random Numbers for Simulation,” Commun. Assoc. Comput. Mach. 33,
1990.

46 3 Random Numbers

Marsaglia, G., “Random Numbers Fall Mainly in the Planes,” Proc. Natl. Acad. Sci. USA
61, 25–28, 1962.

Marsaglia, G., “The Structure of Linear Congruential Sequences,” in Applications of
Number Theory to Numerical Analysis, S. K. Zaremba, ed., Academic Press, London,
1972, pp. 249–255.

Naylor, T., Computer Simulation Techniques. Wiley, New York, 1966.
Ripley, B., Stochastic Simulation. Wiley, New York, 1986.
von Neumann, J., “Various Techniques Used in Connection with Random Digits, ‘Monte

Carlo Method,”’ U.S. National Bureau of Standards Applied Mathematics Series, No.
12, 36–38, 1951.

4Generating Discrete
Random Variables

4.1 The Inverse Transform Method

Suppose we want to generate the value of a discrete random variable X having
probability mass function

P{X = x j } = p j , j = 0, 1, · · · ,
∑

j

p j = 1

To accomplish this, we generate a random number U–that is, U is uniformly
distributed over (0, 1)–and set

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x0 If U < p0

x1 If p0 ≤ U < p0 + p1
...

x j If
∑ j−1

i=0 pi ≤ U <
∑ j

i=0 pi

...

Since, for 0 < a < b < 1, p{a ≤ U < b} = b − a, we have that

p{X = x j } = p
{∑ j−1

i=0
pi ≤ U <

∑ j

i=0
pi

}
= p j

and so X has desired distribution.

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00004-8
© 2013 Elsevier Inc. All rights reserved. 47

http://dx.doi.org/10.1016/B978-0-12-415825-2.00004-8

48 4 Generating Discrete Random Variables

Remarks

1. The preceding can be written algorithmically as

Generate a random number U

If U < p0 set X = x0 and stop

If U < p0 + p1 set X = x1and stop

If U < p0 + p1 + p2 set X = x2 and stop
...

2. If the xi , i ≥ 0, are ordered so that x0 < x1 < x2 < · · · and if we let F

denote the distribution function of X , then F(xk) = ∑k
i=0 pi and so

X will equal x j if F(x j−1) ≤ U < F(x j)

In other words, after generating a random number U we determine the value of X
by finding the interval [F(x j−1), F(x j) in which U lies [or, equivalently, by finding
the inverse of F(U)]. It is for this reason that the above is called the discrete inverse
transform method for generating X .

The amount of time it takes to generate a discrete random variable by the above
method is proportional to the number of intervals one must search. For this reason
it is sometimes worthwhile to consider the possible values x j of X in decreasing
order of the p j .

Example 4a If we wanted to simulate a random variable X such that

p1 = 0.20, p2 = 0.15, p3 = 0.25, p4 = 0.40 where p j = P{X = j}
then we could generate U and do the following:

If U < 0.20 set X = 1 and stop

If U < 0.35 set X = 2 and stop

If U < 0.60 set X = 3 and top

Otherwise set X = 4

However, a more efficient procedure is the following:

If U < 0.40 set X = 4 and stop

If U < 0.65 set X = 3 and stop

If U < 0.85 set X = 1 and stop

Otherwise set X = 2 �
One case where it is not necessary to search for the appropriate interval

in which the random number lies is when the desired random variable is the

4.1 The Inverse Transform Method 49

discrete uniform random variable. That is, suppose we want to generate the value
of X which is equally likely to take on any of the values 1, . . . , n. That is,
P{X = j} = 1/n, j = 1, . . . , n. Using the preceding results it follows that
we can accomplish this by generating U and then setting

X = j if
j − 1

n
≤ U <

j

n

Therefore, X will equal j if j − 1 ≤ nU < j ; or, in other words,

X = Int(nU) + 1

where Int (x)—sometimes written as [x]—is the integer part of x (i.e., the largest
integer less than or equal to x).

Discrete uniform random variables are quite important in simulation, as is
indicated in the following two examples.

Example 4b Generating a Random Permutation Suppose we
are interested in generating a permutation of the numbers 1, 2, . . . , n which is
such that all n! possible orderings are equally likely. The following algorithm
will accomplish this by first choosing one of the numbers 1, . . . , n at random
and then putting that number in position n; it then chooses at random one of
the remaining n − 1 numbers and puts that number in position n − 1; it then
chooses at random one of the remaining n − 2 numbers and puts it in position
n − 2; and so on (where choosing a number at random means that each of the
remaining numbers is equally likely to be chosen). However, so that we do not have
to consider exactly which of the numbers remain to be positioned, it is convenient
and efficient to keep the numbers in an ordered list and then randomly choose the
position of the number rather than the number itself. That is, starting with any
initial ordering P1, P2, . . . , Pn we pick one of the positions 1, . . . , n at random
and then interchange the number in that position with the one in position n. Now
we randomly choose one of the positions 1, . . . , n −1 and interchange the number
in this position with the one in position n − 1, and so on.

Recalling that Int(kU) + 1 will be equally likely to take on any of the values
1, 2, . . . , k, we see that the above algorithm for generating a random permutation
can be written as follows:

step 1: Let P1, P2, . . . , Pn be any permutation of 1, 2, . . . , n (e.g., we can
choose Pj = j, j = 1, . . . , n).

step 2: Set k = n.
step 3: Generate a random number U and let I = Int(kU) + 1.
step 4: Interchange the values of PI and Pk .
step 5: Let k = k − 1 and if k > 1 go to Step 3.
step 6: P1, . . . , Pn is the desired random permutation.

For instance, suppose n = 4 and the initial permutation is 1, 2, 3, 4. If the first
value of I (which is equally likely to be either 1, 2, 3, or 4) is I = 3, then the

50 4 Generating Discrete Random Variables

elements in positions 3 and 4 are interchanged and so the new permutation is 1,
2, 4, 3. If the next value of I is I = 2, then the elements in positions 2 and 3 are
interchanged and so the new permutation is 1, 4, 2, 3. If the final value of I is
I = 2, then the final permutation is 1, 4, 2, 3, and this is the value of the random
permutation. �

One very important property of the preceding algorithm is that it can also be
used to generate a random subset, say of size r , of the integers 1, . . . , n. Namely,
just follow the algorithm until the positions n, n − 1, . . . , n − r + 1 are filled.
The elements in these positions constitute the random subset. (In doing this we
can always suppose that r ≤ n/2; for if r > n/2 then we could choose a random
subset of size n − r and let the elements not in this subset be the random subset of
size r .)

It should be noted that the ability to generate a random subset is particularly
important in medical trials. For instance, suppose that a medical center is planning
to test a new drug designed to reduce its user’s blood cholesterol level. To test its
effectiveness, the medical center has recruited 1000 volunteers to be subjects in
the test. To take into account the possibility that the subjects’ blood cholesterol
levels may be affected by factors external to the test (such as changing weather
conditions), it has been decided to split the volunteers into two groups of size 500—
a treatment group that will be given the drug and a control that will be given a
placebo. Both the volunteers and the administrators of the drug will not be told who
is in each group (such a test is called double-blind). It remains to determine which
of the volunteers should be chosen to constitute the treatment group. Clearly, one
would want the treatment group and the control group to be as similar as possible
in all respects with the exception that members in the first group are to receive
the drug while those in the other group receive a placebo, for then it would be
possible to conclude that any difference in response between the groups is indeed
due to the drug. There is general agreement that the best way to accomplish this is
to choose the 500 volunteers to be in the treatment group in a completely random

fashion. That is, the choice should be made so that each of the

(
1000

500

)
subsets of

500 volunteers is equally likely to constitute the set of volunteers.

Remarks Another way to generate a random permutation is to generate n
random numbers U1, . . . , Un , order them, and then use the indices of the successive
values as the random permutation. For instance, if n = 4, and U1 = 0.4, U2 =
0.1, U3 = 0.8, U4 = 0.7, then, because U2 < U1 < U4 < U3, the random
permutation is 2, 1, 4, 3. The difficulty with this approach, however, is that ordering
the random numbers typically requires on the order of n log(n) comparisons. �

4.1 The Inverse Transform Method 51

Example 4c Calculating Averages Suppose we want to approximate
a = ∑n

i=1 a(i)/n, where n is large and the values a(i), i = 1, . . . , n, are
complicated and not easily calculated. One way to accomplish this is to note that
if X is a discrete uniform random variable over the integers 1, . . . , n, then the
random variable a(X) has a mean given by

E [a(X)] =
n∑

i=1

a(i)P{X = i} =
n∑

i=1

a(i)

n
= a

Hence, if we generate k discrete uniform random variables Xi , i = 1, . . . , k—by
generating k random numbers Ui and setting Xi = Int(nUi) + 1—then each of
the k random variables a(Xi) will have mean a, and so by the strong law of large
numbers it follows that when k is large (though much smaller than n) the average
of these values should approximately equal a. Hence, we can approximate a by
using

a ≈
k∑

i=1

a(Xi)

k
�

Another random variable that can be generated without needing to search for the
relevant interval in which the random number falls is the geometric.

Example 4d Recall that X is said to be a geometric random variable with
parameter p if

P{X = i} = pqi−1, i ≥ 1, where q = 1 − p

X can be thought of as representing the time of the first success when independent
trials, each of which is a success with probability p, are performed. Since

∑ j−1

i=1
P{X = i} = 1 − P{X > j − 1}

= 1 − P{first j − 1 trials are all failures }
= 1 − q j−1, j ≥ 1

we can generate the value of X by generating a random number U and setting X
equal to that value j for which

1 − q j−1 ≤ U < 1 − q j

or, equivalently, for which
q j < 1 − U ≤ q j−1

That is, we can define X by

X = Min{ j : q j < 1 − U }

52 4 Generating Discrete Random Variables

Hence, using the fact that the logarithm is a monotone function, and so a < b is
equivalent to log(a) < log(b), we obtain that X can be expressed as

X = Min{ j : j log(q) < log(1 − U)}
= Min

{
j : j >

log(1 − U)

log(q)

}

where the last inequality changed sign because log(q) is negative for 0 < q < 1.
Hence, using Int () notation we can express X as

X = Int

(
log(1 − U)

log(q)

)
+ 1

Finally, by noting that 1 − U is also uniformly distributed on (0, 1), it follows that

X ≡ Int

(
log(U)

log(q)

)
+ 1

is also geometric with parameter p. �

Example 4e Generating a Sequence of Independent Bernoulli
Random Variables Suppose that you want to generate n independent and
identically distributed Bernoulli random variables X1, . . . , Xn with parameter p.
While this is easily accomplished by generating n random numbers U1, . . . , Un

and then setting

Xi =
{

1, if Ui ≤ p
0, if Ui > p

we will now develop a more efficient approach. To do so, imagine these random
variables represent the result of sequential trials, with trial i being a success if
Xi = 1 or a failure otherwise. To generate these trials when p ≤ 1/2, use the
result of the Example 4d to generate the geometric random variable N , equal to
the trial number of the first success when all trials have success probability p.
Suppose the simulated value of N is N = j . If j > n, set Xi = 0, i = 1, . . . , n;
if j ≤ n, set X1 = . . . = X j−1 = 0, X j = 1; and, if j < n, repeat the preceding
operation to obtain the values of the remaining n − j Bernoulli random variables.
(When p > 1/2, because we want to simultaneously generate as many Bernoulli
variables as possible, we should generate the trial number of the first failure rather
than that of the first success.)

The preceding idea can also be applied when the Xi are independent but not
identically distributed Bernoulli random variables. For each i = 1, . . . , n, let ui be
the least likely of the two possible values of Xi . That is, ui = 1 if P{Xi = 1} ≤ 1/2,
and ui = 0 otherwise. Also, let pi = P{Xi = ui } and let qi = 1 − pi . We will
simulate the sequence of Bernoullis by first generating the value of X , where for
j = 1, . . . , n, X will equal j when trial j is the first trial that results in an unlikely

4.1 The Inverse Transform Method 53

value, and X will equal n + 1 if none of the n trials results in its unlikely value.
To generate X , let qn+1 = 0 and note that

P{X > j} =
j∏

i=1

qi , j = 1, . . . , n + 1

Thus,

P{X ≤ j} = 1 −
j∏

i=1

qi , j = 1, . . . , n + 1

Consequently, we can simulate X by generating a random number, U , and then
setting

X = min

{
j : U ≤ 1 −

j∏
i=1

qi

}

If X = n + 1, the simulated sequence of Bernoulli random variables is
Xi = 1 − ui , i = 1, . . . , n. If X = j, j ≤ n, set Xi = 1 − ui , i =
1, . . . , j − 1, X j = u j ; if j < n then generate the remaining values X j+1, . . . , Xn

in a similar fashion.

Remark on Reusing Random Numbers Although the procedure just
given for generating the results of n independent trials is more efficient than
generating a uniform random variable for each trial, in theory one could use a
single random number to generate all n trial results. To do so, start by generating
a random U and letting

X1 =
{

1, if U ≤ p1

0, if U > p1

Now, use that the conditional distribution of U given that U ≤ p is the uniform
distribution on (0, p). Consequently, given that U ≤ p1, the ratio U

P1
is uniform on

(0, 1). Similarly, using that the conditional distribution of U given that U > p is
the uniform distribution on (p, 1), it follows that conditional on U > p1 the ratio
U−p1
1−p1

is uniform on (0,1). Thus, we can in theory use a single random number U
to generate the results of the n trials as follows:

1. I = 1
2. Generate U
3. If U ≤ pI set X I = 1, otherwise set X I = 0
4. If I = n stop
5. If U ≤ pI set U = U

pI
, otherwise set U = U−pI

1−pI

6. I = I + 1
7. Go to Line 3.

54 4 Generating Discrete Random Variables

There is, however, a practicle problem with reusing a single random number;
namely, that computers only specify random numbers up to a certain number
of decimal places, and round off errors can result in the transformed variables
becoming less uniform after awhile. For instance, suppose in the preceding that
all pi = .5. Then U is transformed either to 2U if U ≤ .5, or 2U − 1 if U > .5.
Consequently, if the last digit of U is 0 then it will remain 0 in the next
transformation. Also, if the next to last digit ever becomes 5 then it will be
transformed to 0 in the next iteration, and so the last 2 digits will always be 0
from then on, and so on. Thus, if one is not careful all the random numbers could
end up equal to 1 or 0 after a large number of iterations. (One possible solution
might be to use 2U − .999 . . . 9 rather than 2U − 1.)

4.2 Generating a Poisson Random Variable

The random variable X is Poisson with mean λ if

pi = P{X = i} = e−λ λi

i!
i = 0, 1, . . .

The key to using the inverse transform method to generate such a random variable
is the following identity (proved in Section 2.8 of Chapter 2):

pi+1 = λ

i + 1
pi , i ≥ 0 (4.1)

Upon using the above recursion to compute the Poisson probabilities as they
become needed, the inverse transform algorithm for generating a Poisson random
variable with mean λ can be expressed as follows. (The quantity i refers to the
value presently under consideration; p = pi is the probability that X equals i , and
F = F(i) is the probability that X is less than or equal to i .)

step 1: Generate a random number U .
step 2: i = 0, p = e−λ, F = p.
step 3: If U < F , set X = i and stop.
step 4: p = λp/(i + 1), F = F + p, i = i + 1.
step 5: Go to Step 3.

(In the above it should be noted that when we write, for example, i = i + 1, we do
not mean that i is equal to i + 1 but rather that the value of i should be increased
by 1.) To see that the above algorithm does indeed generate a Poisson random
variable with mean λ, note that it first generates a random number U and then
checks whether or not U < e−λ = p0. If so, it sets X = 0. If not, then it computes
(in Step 4) p1 by using the recursion (4.1). It now checks whether U < p0 + p1

(where the right-hand side is the new value of F), and if so it sets X = 1,
and so on.

4.3 Generating Binomial Random Variables 55

The above algorithm successively checks whether the Poisson value is 0, then
whether it is 1, then 2, and so on. Thus, the number of comparisons needed will
be 1 greater than the generated value of the Poisson. Hence, on average, the
above will need to make 1 + λ searches. Whereas this is fine when λ is small,
it can be greatly improved upon when λ is large. Indeed, since a Poisson random
variable with mean λ is most likely to take on one of the two integral values
closest to λ, a more efficient algorithm would first check one of these values,
rather than starting at 0 and working upward. For instance, let I = Int(λ) and use
Equation (4.1) to recursively determine F(I). Now generate a Poisson random
variable X with mean λ by generating a random number U , noting whether or not
X ≤ I by seeing whether or not U ≤ F(I). Then search downward starting from
I in the case where X ≤ I and upward starting from I + 1 otherwise.

The number of searches needed by this algorithm is roughly 1 morethan the
absolute difference between the random variable X and its mean λ. Since for λ

large a Poisson is (by the central limit theorem) approximately normal with mean
and variance both equal to λ, it follows that1

Average number of searches � 1 + E[|X − λ|] where X ∼ N (λ, λ)∗

= 1 + √
λE

[|X − λ|√
λ

]
= 1 + √

λE [|Z |] where Z ∼ N (0, 1)

= 1 + 0.798
√

λ (see Exercise 11)

That is, using Algorithm 4-1, the average number of searches grows with the square
root of λ rather than with λ as λ becomes larger and larger.

4.3 Generating Binomial Random Variables

Suppose we want to generate the value of a binomial (n, p) random variable X—
that is, X is such that

P{X = i} = n!

i!(n − i)!
pi (1 − p)n−i , i = 0, 1, . . . , n

To do so, we employ the inverse transform method by making use of the recursive
identity

P{X = i + 1} = n − i

i + 1

p

1 − p
P{X = i}

1 We use the notation X ∼ F to mean that X has distribution function F . The symbol N (μ, σ 2) stands
for a normal distribution with mean μ and variance σ 2.

56 4 Generating Discrete Random Variables

With i denoting the value currently under consideration, pr = P{X = i} the
probability that X is equal to i , and F = F(i) the probability that X is less than
or equal to i , the algorithm can be expressed as follows:

Inverse Transform Algorithm for Generating a Binomial (n, p)
Random Variable

step 1: Generate a random number U .
step 2: c = p/(1 − p), i = 0, pr = (1 − p)n, F = pr.
step 3: If U < F , set X = i and stop.
step 4: pr = [c(n − i)/(i + 1)] pr, F = F + pr, i = i + 1.
step 5: Go to Step 3.

The preceding algorithm first checks whether X = 0, then whether X = 1,
and so on. Hence, the number of searches it makes is 1 more than the value of X .
Therefore, on average, it will take 1+np searches to generate X . Since a binomial
(n, p) random variable represents the number of successes in n independent trials
when each is a success with probability p, it follows that such a random variable
can also be generated by subtracting from n the value of a binomial (n, 1 − p)

random variable (why is that?). Hence, when p > 1
2 , we can generate a binomial

(n, 1 − p) random variable by the above method and subtract its value from n to
obtain the desired generation.

Remarks

1. Another way of generating a binomial (n, p) random variable X is by
utilizing its interpretation as the number of successes in n independent
Bernoulli trials, when each trial is a success with probability p. Consequently,
we can also simulate X by generating the outcomes of these n Bernoulli trials.

2. As in the Poisson case, when the mean np is large it is better to first determine
if the generated value is less than or equal to I ≡ Int(np) or whether it is
greater than I . In the former case one should then start the search with I , then
I − 1, . . . , and so on; whereas in the latter case one should start searching
with I + 1 and go upward. �

4.4 The Acceptance_Rejection Technique

Suppose we have an efficient method for simulating a random variable having
probability mass function {q j , j ≥ 0}. We can use this as the basis for simulating
from the distribution having mass function {p j , j ≥ 0} by first simulating a random
variable Y having mass function {q j } and then accepting this simulated value with
a probability proportional to pY /qY .

4.4 The Acceptance_Rejection Technique 57

Generate Y with
mass function qj

Generate
U

Is U ≤ pY /cqY

Start Yes

No
X = Y

Figure 4.1. Acceptance–rejection.

Specifically, let c be a constant such that

p j

q j
≤ c for all j such that p j > 0 (4.2)

We now have the following technique, called the rejection method or the
acceptance–rejection method, for simulating a random variable X having mass
function p j = P{X = j}.
Rejection Method

step 1: Simulate the value of Y , having probability mass function q j .
step 2: Generate a random number U .
step 3: If U < pY /cqY , set X = Y and stop. Otherwise, return to Step 1.

The rejection method is pictorially represented in Figure 4.1.
We now prove that the rejection method works.

Theorem The acceptance–rejection algorithm generates a random variable
X such that

P{X = j} = p j , j = 0, . . .

In addition, the number of iterations of the algorithm needed to obtain X is a
geometric random variable with mean c.

Proof To begin, let us determine the probability that a single iteration produces
the accepted value j . First note that

P{Y = j, it is accepted} = P{Y = j}P{accept|Y = j}
= q j

p j

cq j

= p j

c

Summing over j yields the probability that a generated random variable is accepted:

P{accepted} =
∑

j

p j

c
= 1

c

58 4 Generating Discrete Random Variables

As each iteration independently results in an accepted value with probability 1/c,
we see that the number of iterations needed is geometric with mean c. Also,

P{X = j} =
∑

n

P{ j accepted on iteration n}

=
∑

n

(1 − 1/c)n−1 p j

c

= p j �

Remark The reader should note that the way in which we “accept the value Y
with probability pY /cqY ” is by generating a random number U and then accepting
Y if U ≤ pY /cqY .

Example 4f Suppose we wanted to simulate the value of a random variable
X that takes one of the values 1, 2, . . . , 10 with respective probabilities 0.11, 0.12,
0.09, 0.08, 0.12, 0.10, 0.09, 0.09, 0.10, 0.10. Whereas one possibility is to use the
inverse transform algorithm, another approach is to use the rejection method with q
being the discrete uniform density on 1, . . . , 10. That is, q j = 1/10, j = 1, . . . , 10.
For this choice of {q j } we can choose c by

c = Max
p j

q j
= 1.2

and so the algorithm would be as follows:

step 1: Generate a random number U1 and set Y = Int(10U1) + 1.
step 2: Generate a second random number U2.
step 3: If U2 ≤ pY /.12, set X = Y and stop. Otherwise return to Step 1.

The constant 0.12 in Step 3 arises since cqY = 1.2/10 = 0.12. On average, this
algorithm requires only 1.2 iterations to obtain the generated value of X . �

The power of the rejection method, a version of which was initially proposed by
the famous mathematician John von Neumann, will become even more readily
apparent when we consider its analogue when generating continuous random
variables.

4.5 The Composition Approach

Suppose that we had an efficient method to simulate the value of a random variable
having either of the two probability mass functions {p(1)

j , j ≥ 0} or {p(2)

j , j ≥ 0},
and that we wanted to simulate the value of the random variable X having mass
function

P{X = j} = αp(1)

j + (1 − α)p(2)

j , j ≥ 0 (4.3)

4.5 The Composition Approach 59

where 0 < α < 1. One way to simulate such a random variable X is to note that
if X1 and X2 are random variables having respective mass functions {p(1)

j } and

{p(2)

j }, then the random variable X defined by

X =
{

X1 with probability α

X2 with probability 1 − α

will have its mass function given by (4.3). From this it follows that we can generate
the value of such a random variable by first generating a random number U and
then generating a value of X1 if U < α and of X2 if U > α.

Example 4g Suppose we want to generate the value of a random variable X
such that

p j = P{X = j} =
{

0.05 for j = 1, 2, 3, 4, 5
0.15 for j = 6, 7, 8, 9, 10

By noting that p j = 0.5p(1)

j + 0.5p(2)

j , where

p(1)

j = 0.1, j = 1, . . . , 10 and p(2)

j =
{

0 for j = 1, 2, 3, 4, 5
0.2 for j = 6, 7, 8, 9, 10

we can accomplish this by first generating a random number U and then generating
from the discrete uniform over 1, . . . , 10 if U < 0.5 and from the discrete uniform
over 6, 7, 8, 9, 10 otherwise. That is, we can simulate X as follows:

step 1: Generate a random number U1.
step 2: Generate a random number U2.
step 3: If U1 < 0.5, set X = Int(10U2) + 1. Otherwise,

set X = Int(5U2) + 6. �

If Fi , i = 1, . . . , n are distribution functions and αi , i = 1, . . . , n, are non
negative numbers summing to 1, then the distribution function F given by

F(x) =
n∑

i=1

αi Fi (x)

is said to be a mixture, or a composition, of the distribution functions Fi ,

i = 1, . . . , n. One way to simulate from F is first to simulate a random variable
I , equal to i with probability αi , i = 1, . . . , n, and then to simulate from the
distribution FI . (That is, if the simulated value of I is I = j , then the second
simulation is from Fj .) This approach to simulating from F is often referred to as
the composition method.

60 4 Generating Discrete Random Variables

4.6 The Alias Method for Generating Discrete Random
Variables

In this section we study a technique for generating discrete random variables which,
although requiring some setup time, is very fast to implement.

In what follows, the quantities P, P(k), Q(k), k ≤ n − 1, represent probability
mass functions on the integers 1, 2, . . . , n—that is, they are n-vectors of
nonnegative numbers summing to 1. In addition, the vector P(k) has at most k
nonzero components, and each of the Q(k) has at most two nonzero components.
We show that any probability mass function P can be represented as an equally
weighted mixture of n − 1 probability mass functions Q (each having at most two
nonzero components). That is, we show, for suitably defined Q(1), . . . , Q(n−1), that
P can be expressed as

P = 1

n − 1

n−1∑
k=1

Q(k) (4.4)

As a prelude to presenting the method for obtaining this representation, we need
the following simple lemma whose proof is left as an exercise.

Lemma Let P = {Pi , i = 1, . . . , n} denote a probability mass function. Then

(a) there exists an i, 1 ≤ i ≤ n, such that Pi < 1/(n − 1), and
(b) for this i there exists aj, j
= i , such that Pi + Pj ≥ 1/(n − 1).

Before presenting the general technique for obtaining the representation (4.4),
let us illustrate it by an example.

Example 4h Consider the three-point distribution P with P1 = 7
16 , P2 = 1

2 ,

P3 = 1
16 . We start by choosing i and j satisfying the conditions of the preceding

lemma. Since P3 < 1
2 and P3+P2 ≥ 1

2 , we can work with i = 3 and j = 2. We now
define a two-point mass function Q(1), putting all its weight on 3 and 2 and such
that P is expressible as an equally weighted mixture between Q(1) and a second
two-point mass function Q(2). In addition, all the mass of point 3 is contained in
Q(1). As we have

Pj = 1

2
(Q(1)

j + Q(2)

j), j = 1, 2, 3 (4.5)

and Q(2)

3 is supposed to equal 0, we must therefore take

Q(1)

3 = 2P3 = 1

8
, Q(1)

2 = 1 − Q(1)

3 = 7

8
, Q(1)

1 = 0

To satisfy (10.2), we must then set

Q(2)

3 = 0, Q(2)

2 = 2P2 − 7

8
= 1

8
, Q(2)

1 = 2P1 = 7

8

4.6 The Alias Method for Generating Discrete Random Variables 61

Hence we have the desired representation in this case. Suppose now that the original
distribution was the following four-point mass function:

P1 = 7

16
, P2 = 1

4
, P3 = 1

8
, P4 = 3

16

Now P3 < 1
3 and P3 + P1 ≥ 1

3 . Hence our initial two-point mass function —Q(1)

— concentrates on points 3 and 1 (giving no weight to 2 and 4). Because the final
representation gives weight 1

3 to Q(1) and in addition the other Q(j), j = 2, 3, do
not give any mass to the value 3, we must have that

1

3
Q(1)

3 = P3 = 1

8

Hence

Q(1)

3 = 3

8
, Q(1)

1 = 1 − 3

8
= 5

8
Also, we can write

P = 1

3
Q(1) + 2

3
P(3)

where P(3), to satisfy the above, must be the vector

P(3)

1 = 3

2

(
P1 − 1

3
Q(1)

1

)
= 11

32

P(3)

2 = 3

2
P2 = 3

8
P(3)

3 = 0

P(3)

4 = 3

2
P4 = 9

32

Note that P(3) gives no mass to the value 3. We can now express the mass function
P(3) as an equally weighted mixture of two-point mass functions Q(2) and Q(3), and
we end up with

P = 1

3
Q(1) + 2

3

(
1

2
Q(2) + 1

2
Q(3)

)

= 1

3
(Q(1) + Q(2) + Q(3))

(We leave it as an exercise for the reader to fill in the details.) �
The above example outlines the following general procedure for writing the

n-point mass function P in the form (4.4), where each of the Q(i) are mass functions
giving all their mass to at most two points. To start, we choose i and j satisfying
the conditions of the lemma. We now define the mass function Q(1) concentrating

62 4 Generating Discrete Random Variables

on the points i and j and which contain all the mass for point i by noting that in
the representation (4.4) Q(k)

i = 0 for k = 2, . . . , n − 1, implying that

Q(1)

i = (n − 1)Pi and so Q(1)

j = 1 − (n − 1)Pi

Writing

P = 1

n − 1
Q(1) + n − 2

n − 1
P(n−1) (4.6)

where P(n−1) represents the remaining mass, we see that

P (n−1)

i = 0

P (n−1)

j = n − 1

n − 2

(
Pj − 1

n − 1
Q(1)

j

)
= n − 1

n − 2

(
Pi + Pj − 1

n − 1

)

P (n−1)

k = n − 1

n − 2
Pk, k
= i or j

That the above is indeed a probability mass function is easily checked—for
example, the nonnegativity of P (n−1)

j follows from the fact that j was chosen
so that Pi + Pj ≥ 1/(n − 1).

We may now repeat the above procedure on the (n − 1) point probability mass
function P(n−1) to obtain

P(n−1) = 1

n − 2
Q(2) + n − 3

n − 2
P(n−2)

and thus from (4.6) we have

P = 1

n − 1
Q(1) + 1

n − 1
Q(2) + n − 3

n − 1
P(n−2)

We now repeat the procedure on P (n−2) and so on until we finally obtain

P = 1

n − 1
(Q(1) + · · · + Q(n−1))

In this way we are able to represent P as an equally weighted mixture of n − 1
two-point mass functions. We can now easily simulate from P by first generating a
random integer N equally likely to be either 1, 2, . . . , n − 1. If the resulting value
N is such that Q(N) puts positive weight only on the points iN and jN , we can set X
equal to iN if a second random number is less than Q(N)

iN
and equal to jN otherwise.

The random variable X will have probability mass function P. That is, we have
the following procedure for simulating from P.

4.7 Generating Random Vectors 63

step 1: Generate U1 and set N = 1 + Int [(n − 1)U1].
step 2: Generate U2 and set

X =
{

iN if U2 < Q(N)

iN

jN otherwise

Remarks

1. The above is called the alias method because by a renumbering of the Q’s
we can always arrange things so that for each k, Q(k)

k > 0. (That is, we can
arrange things so that the kth two-point mass function gives positive weight
to the value k.) Hence, the procedure calls for simulating N , equally likely
to be 1, 2, . . . , n − 1, and then if N = k it either accepts k as the value of X ,
or it accepts for the value of X the “alias” of k (namely, the other value that
Q(k) gives positive weight).

2. Actually, it is not necessary to generate a new random number in Step 2.
Because N − 1 is the integer part of (n − 1)U1, it follows that the remainder
(n − 1)U1 − (N − 1) is independent of N1 and is uniformly distributed on
(0, 1). Hence, rather than generating a new random number U2 in Step 2, we
can use (n − 1)U1 − (N − 1). �

4.7 Generating Random Vectors

A random vector X1, . . . , Xn can be simulated by sequentially generating the Xi .
That is, first generate X1; then generate X2 from its conditional distribution given
the generated value of X1; then generate X3 from its conditional distribution given
the generated values of X1 and X2; and so on. This is illustrated in Example 4i,
which shows how to simulate a random vector having a multinomial distribution.

Example 4i Consider n independent trials, each of which results in one of the
outcomes 1, 2, . . . , r with respective probabilities p1, p2, . . . , pr ,

∑r
i=1 pi = 1. If

Xi denotes the number of trials that result in outcome i , then the random vector
(X1, . . . , Xr) is said to be a multinomial random vector. Its joint probability mass
function is given by

P{Xi = xi , i = 1, . . . , r} = n!

x1! · · · xr !
px1

1 · · · pxr
r ,

r∑
i=1

xi = n

The best way to simulate such a random vector depends on the relative sizes of r
and n. If r is large relative to n, so that many of the outcomes do not occur on any
of the trials, then it is probably best to simulate the random variables by generating

64 4 Generating Discrete Random Variables

the outcomes of the n trials. That is, first generate independent random variables
Y1, . . . , Yn such that

P{Y j = i} = pi , i = 1, . . . , r, j = 1, . . . , n,

and then set
Xi = number of j, j = 1, . . . , n: Y j = i

(That is, the generated value of Y j represents the result of trial j , and Xi is the
number of trials that result in outcome i .)

On the other hand, if n is large relative to r , then X1, . . . , Xr can be simulated
in sequence. That is, first generate X1, then X2, then X3, and so on. Because each
of the n trials independently results in outcome 1 with probability p1, it follows
that X1 is a binomial random variable with parameters (n, p1). Therefore, we can
use the method of Section 4.3 to generate X1. Suppose its generated value is x1.
Then, given that x1 of the n trials resulted in outcome 1, it follows that each of the
other n − x1 trials independently results in outcome 2 with probability

P{2|not1} = p2

1 − p1

Therefore, the conditional distribution of X2, given that X1 = x1, is binomial with
parameters (n − x1,

p2
1−p1

). Thus, we can again make use of Section 4.3 to generate
the value of X2. If the generated value of X2 is x2, then we next need to generate
the value of X3 conditional on the results that X1 = x1, X2 = x2. However, given
there are x1 trials that result in outcome 1 and x2 trials that result in outcome 2,
each of the remaining n − x1 − x2 trials independently results in outcome 3 with
probability p3

1−p1−p2
. Consequently, the conditional distribution of X3 given that

Xi = xi , i = 1, 2, is binomial with parameters (n − x1 − x2,
p3

1−p1−p2
). We then use

this fact to generate X3, and continue on until all the values X1, . . . , Xr have been
generated. �

Exercises

1. Write a program to generate n values from the probability mass function
p1 = 1

3 , p2 = 2
3 .

(a) Let n = 100, run the program, and determine the proportion of values
that are equal to 1.

(b) Repeat (a) with n = 1000.
(c) Repeat (a) with n = 10,000.

2. Write a computer program that, when given a probability mass function
{p j , j = 1, . . . , n} as an input, gives as an output the value of a random
variable having this mass function.

Exercises 65

3. Give an efficient algorithm to simulate the value of a random variable X such
that

P{X = 1} = 0.3, P{X = 2} = 0.2, P{X = 3} = 0.35, P{X = 4} = 0.15

4. A deck of 100 cards—numbered 1, 2, . . . , 100—is shuffled and then turned
over one card at a time. Say that a “hit” occurs whenever card i is the i th card
to be turned over, i = 1, . . . , 100. Write a simulation program to estimate the
expectation and variance of the total number of hits. Run the program. Find
the exact answers and compare them with your estimates.

5. Another method of generating a random permutation, different from the one
presented in Example 4b, is to successively generate a random permutation
of the elements 1, 2, . . . , n starting with n = 1, then n = 2, and so on. (Of
course, the random permutation when n = 1 is 1.) Once one has a random
permutation of the first n − 1 elements—call it P1, . . . , Pn−1—the random
permutation of the n elements 1, . . . , n is obtained by putting n in the final
position—to obtain the permutation P1, . . . , Pn−1, n—and then interchanging
the element in position n (namely, n) with the element in a randomly chosen
position which is equally likely to be either position 1, position 2, . . ., or
position n.

(a) Write an algorithm that accomplishes the above.
(b) Prove by mathematical induction on n that the algorithm works, in that

the permutation obtained is equally likely to be any of the n! permutations
of 1, 2, . . . , n.

6. Using an efficient procedure, along with the text’s random number sequence,
generate a sequence of 25 independent Bernoulli random variables, each
having parameter p = .8. How many random numbers were needed?

7. A pair of fair dice are to be continually rolled until all the possible outcomes
2, 3, . . . , 12 have occurred at least once. Develop a simulation study to estimate
the expected number of dice rolls that are needed.

8. Suppose that each item on a list of n items has a value attached to it, and let
ν(i) denote the value attached to the i th item on the list. Suppose that n is very
large, and also that each item may appear at many different places on the list.
Explain how random numbers can be used to estimate the sum of the values
of the different items on the list (where the value of each item is to be counted
once no matter how many times the item appears on the list).

9. Consider the n events A1, . . . , An where Ai consists of the following ni

outcomes: Ai = {ai,1, ai,2, . . . , ai,ni }. Suppose that for any given outcome
a, P{a}, the probability that the experiment results in outcome a is known.

66 4 Generating Discrete Random Variables

Explain how one can use the results of Exercise 8 to estimate P{⋃n
i=1 Ai }, the

probability that at least one of the events Ai occurs. Note that the events Ai ,
i = 1, . . . , n, are not assumed to be mutually exclusive.

10. The negative binomial probability mass function with parameters (r, p), where
r is a positive integer and 0 < p < 1, is given by

p j = (j − 1)!

(j − r)!(r − 1)!
pr (1 − p) j−r , j = r, r + 1, . . .

(a) Use the relationship between negative binomial and geometric random
variables and the results of Example 4d to obtain an algorithm for
simulating from this distribution.

(b) Verify the relation

p j+1 = j (1 − p)

j + 1 − r
p j

(c) Use the relation in part (b) to give a second algorithm for generating
negative binomial random variables.

(d) Use the interpretation of the negative binomial distribution as the number
of trials it takes to amass a total of r successes when each trial
independently results in a success with probability p, to obtain still another
approach for generating such a random variable.

11. Give an efficient method for generating a random subset of size r from the set
{1, . . . , n} conditional on the event that the subset contains at least one of the
elements of {1, . . . , k} when r and k much smaller than n.

12. If Z is a standard normal random variable, show that

E [|Z |] =
(

2

π

)1/2

≈ 0.798

13. Give two methods for generating a random variable X such that

P{X = i} = e−λλi/ i!∑k
j=0 e−λλ j/j!

, i = 0, . . . , k

14. Let X be a binomial random variable with parameters n and p. Suppose that
we want to generate a random variable Y whose probability mass function is
the same as the conditional mass function of X given that X ≥ k, for some
k ≤ n. Let α = P{X ≥ k} and suppose that the value of α has been computed.

(a) Give the inverse transform method for generating Y .
(b) Give a second method for generating Y .

Exercises 67

(c) For what values of α, small or large, would the algorithm in (b) be
inefficient?

15. Give a method for simulating X , having the probability mass function p j , j =
5, 6, . . . , 14, where

p j =
{

0.11 when j is odd and 5 ≤ j ≤ 13
0.09 when j is even and 6 ≤ j ≤ 14

Use the text’s random number sequence to generate X .

16. Suppose that the random variable X can take on any of the values 1, . . . , 10
with respective probabilities 0.06, 0.06, 0.06, 0.06, 0.06, 0.15, 0.13, 0.14, 0.15,
0.13. Use the composition approach to give an algorithm that generates the
value of X . Use the text’s random number sequence to generate X.

17. Present a method to generate the value of X , where

P{X = j} =
(

1

2

) j+1

+
(

1
2

)
2 j−1

3 j
, j = 1, 2, . . .

Use the text’s random number sequence to generate X .

18. Let X have mass function p j = P{X = j},∑∞
j=1 p j = 1. Let

λn = P{X = n|X > n − 1} = pn

1 −∑n−1
j=1 p j

, n = 1, . . .

(a) Show that p1 = λ1 and

pn = (1 − λ1)(1 − λ2) · · · (1 − λn−1)λn

The quantities λn, n ≥ 1, are called the discrete hazard rates, since if we
think of X as the lifetime of some item then λn represents the probability
that an item that has reached the age n will die during that time period.
The following approach to simulating discrete random variables, called the
discrete hazard rate method, generates a succession of random numbers,
stopping when the nth random number is less than λn . The algorithm can
be written as follows:

step 1: X = 1.
step 2: Generate a random number U .
step 3: If U < λX , stop.
step 4: X = X + 1.
step 5: Go to Step 2.

68 4 Generating Discrete Random Variables

(a) Show that the value of X when the above stops has the desired mass
function.

(b) Suppose that X is a geometric random variable with parameter p.
Determine the values λn, n ≥ 1. Explain what the above algorithm is
doing in this case and why its validity is clear.

19. Suppose that 0 ≤ λn ≤ λ, for all n ≥ 1. Consider the following algorithm to
generate a random variable having discrete hazard rates {λn}.

step 1: S = 0.

step 2: Generate U and set Y = Int
(

log(U)

log(1−λ)

)
+ 1.

step 3: S = S + Y .
step 4: Generate U .
step 5: If U ≤ λS/λ, set X = S and stop. Otherwise, go to 2.

(a) What is the distribution of Y in Step 2?
(b) Explain what the algorithm is doing.
(c) Argue that X is a random variable with discrete hazard rates {λn}.

20. Suppose X and Y are discrete random variables and that you want to generate
the value of a random variable W with probability mass function

P(W = i) = P(X = i |Y = j)

for some specified j for which P(Y = j) > 0. Show that the following
algorithm accomplishes this.

(a) Generate the value of a random variable having the distribution of X .
(b) Let i being the generated value in (a).
(c) Generate a random number U.
(d) If U < P(Y = j |X = i) set W = i and stop.
(e) Return to (a).

21. Set up the alias method for generating a binomial with parameters (5, 0.4).

22. Explain how we can number the Q(k) in the alias methodso that k is one of the
two points to which Q(k) gives weight.

23. A random selection of m balls is to be made from an urn that contains n balls,
ni of which have color type i,

∑r
i=1 ni = n. Discuss efficient procedures for

simulating X1, . . . , Xr , where Xi denotes the number of withdrawn balls that
have color type i .

5Generating Continuous
Random Variables

Introduction

Each of the techniques for generating a discrete random variable has its analogue
in the continuous case. In Sections 5.1 and 5.2 we present the inverse transform
approach and the rejection approach for generating continuous random variables.
In Section 5.3 we consider a powerful approach for generating normal random
variables, known as the polar method. Finally, in Sections 5.4 and 5.5 we consider
the problem of generating Poisson and nonhomogeneous Poisson processes.

5.1 The Inverse Transform Algorithm

Consider a continuous random variable having distribution function F . A general
method for generating such a random variable—called the inverse transformation
method—is based on the following proposition.

Proposition Let U be a uniform (0, 1) random variable. For any continuous
distribution function F the random variable X defined by

X = F−1(U)

has distribution F. [F−1(u) is defined to be that value of x such that F(x) = u.]

Proof Let FX denote the distribution function of X = F−1(U). Then

FX (x) = P{X � x}
= P{F−1(U) � x} (5.1)

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00005-X
© 2013 Elsevier Inc. All rights reserved. 69

http://dx.doi.org/10.1016/B978-0-12-415825-2.00005-X

70 5 Generating Continuous Random Variables

Now since F is a distribution function it follows that F(x) is a monotone increasing
function of x and so the inequality “a � b” is equivalent to the inequality
“F(a) � F(b).” Hence, from Equation (5.1), we see that

FX (x) = P{F(F−1(U)) � F(x)} since F(F−1(U)) = U

= P{U � F(x)} since U is uniform (0, 1)

= F(x) �

The above proposition thus shows that we can generate a random variable X
from the continuous distribution function F by generating a random number U
and then setting X = F−1(U).

Example 5a Suppose we wanted to generate a random variable X having
distribution function

F(x) = xn, 0 < x < 1

If we let x = F−1(u), then

u = F(x) = xn or, equivalently, x = u1/n

Hence we can generate such a random variable X by generating a random number
U and then setting X = U 1/n . �

The inverse transform method yields a powerful approach to generating
exponential random variables, as is indicated in the next example.

Example 5b If X is an exponential random variable with rate 1, then its
distribution function is given by

F(x) = 1 − e−x

If we let x = F−1(u), then

u = F(x) = 1 − e−x

or
1 − u = e−x

or, taking logarithms,
x = − log(1 − u)

Hence we can generate an exponential with parameter 1 by generating a random
number U and then setting

X = F−1(U) = − log(1 − U)

A small savings in time can be obtained by noting that 1 − U is also uniform on
(0, 1) and thus − log(1 − U) has the same distribution as − log U . That is, the
negative logarithm of a random number is exponentially distributed with rate 1.

5.1 The Inverse Transform Algorithm 71

In addition, note that if X is exponential with mean 1 then, for any positive
constant c, cX is exponential with mean c. Hence, an exponential random variable
X with rate λ (mean 1/λ) can be generated by generating a random number U and
setting

X = −1

λ
log U �

Remark The above also provides us with another algorithm for generating a
Poisson random variable. To begin, recall that a Poisson process with rate λ results
when the times between successive events are independent exponentials with rate
λ. (See Section 2.9 of Chapter 2.) For such a process, N (1), the number of events by
time 1, is Poisson distributed with mean λ. However, if we let Xi , i = 1, . . ., denote
the successive interarrival times, then the nth event will occur at time

∑n
i=1 Xi ,

and so the number of events by time 1 can be expressed as

N (1) = Max

{
n:

n∑
i=1

Xi � 1

}

That is, the number of events by time 1 is equal to the largest n for which the
nth event has occurred by time 1. (For example, if the fourth event occurred by
time 1 but the fifth event did not, then clearly there would have been a total of
four events by time 1.) Hence, using the results of Example 5b, we can generate
N = N (1), a Poisson random variable with mean λ, by generating random numbers
U1, . . . , Un, . . . and setting

N = Max

{
n:

n∑
i=1

−1

λ
log Ui � 1

}

= Max

{
n:

n∑
i=1

log Ui � −λ

}

= Max {n: log (U1 · · · Un) � −λ}
= Max {n: U1 · · · Un � e−λ}

Hence, a Poisson random variable N with mean λ can be generated by successively
generating random numbers until their product falls below e−λ, and then setting N
equal to 1 less than the number of random numbers required. That is,

N = Min{n: U1 · · · Un < e−λ} − 1 �

The results of Example 5b along with the relationship between the gamma and
the exponential distribution can be used to efficiently generate a gamma (n, λ)

random variable.

72 5 Generating Continuous Random Variables

Example 5c Suppose we wanted to generate the value of a gamma (n, λ)

random variable. Since the distribution function F of such a random variable is
given by

F(x) =
∫ x

0

λe−λy(λy)n−1

(n − 1)!
dy

it is not possible to give a closed form expression for its inverse. However, by using
the result that a gamma (n, λ) random variable X can be regarded as being the sum
of n independent exponentials, each with rate λ (see Section 2.9 of Chapter 2),
we can make use of Example 5b to generate X . Specifically, we can generate a
gamma (n, λ) random variable by generating n random numbers U1, . . . , Un and
then setting

X = −1

λ
log U1 − · · · − 1

λ
log Un

= −1

λ
log(U1 · · · Un)

where the use of the identity
∑n

i=1 log xi = log(x1 · · · xn) is computationally time
saving in that it requires only one rather than n logarithmic computations. �

The results of Example 5c can be used to provide an efficient way of generating
a set of exponential random variables by first generating their sum and then,
conditional on the value of that sum, generating the individual values. For example,
we could generate X and Y , a pair of independent and identically distributed
exponentials having mean 1, by first generating X + Y and then using the result
(Exercise 36 of Chapter 2) that, given that X + Y = t , the conditional distribution
of X is uniform on (0, t). The following algorithm can thus be used to generate a
pair of exponentials with mean 1.

step 1: Generate random numbers U1 and U2.
step 2: Set t = − log(U1U2).
step 3: Generate a random number U3.
step 4: X = tU3, Y = t − X.

Comparing the above with the more direct approach of generating two random
numbers U1 and U2 and then setting X = − log U1, Y = − log U2 shows that the
above algorithm saves a logarithmic computation at the cost of two multiplications
and the generation of a random number.

We can also generate k independent exponentials with mean 1 by first generating
their sum, say by − log(U1 · · · Uk), and then generating k − 1 additional random
numbers U1, . . . , Uk−1, which should then be ordered. If U(1) < U(2) < · · · <

U(k−1) are their ordered values, and if − log(U1 · · · Uk) = t , then the k exponentials
are

t[U(i) − U(i−1)], i = 1, 2, . . . , k, where U(0) ≡ 0, U(k) ≡ 1

5.2 The Rejection Method 73

Generate
Y ~ g

Generate a
random number

U

Yes

No

Is
Set X = Y

f (Y)
cg (Y)U ≤

Start

?

Figure 5.1. The rejection method for simulating a random variable X having density
function f .

5.2 The Rejection Method

Suppose we have a method for generating a random variable having density
function g(x). We can use this as the basis for generating from the continuous
distribution having density function of f (x) by generating Y from g and then
accepting this generated value with a probability proportional to f (Y)/g(Y).

Specifically, let c be a constant such that

f (y)

g(y)
� c for all y

We then have the following technique (illustrated in Figure 5.1) for generating a
random variable having density f .

The Rejection Method

step 1: Generate Y having density g.
step 2: Generate a random number U .
step 3: If U � f (Y)

cg(Y)
, set X = Y . Otherwise, return to Step 1.

The reader should note that the rejection method is exactly the same as in the
case of discrete random variables, with the only difference being that densities
replace mass functions. In exactly the same way as we did in the discrete case we
can prove the following result.

Theorem

(i) The random variable generated by the rejection method has density f.
(ii) The number of iterations of the algorithm that are needed is a geometric

random variable with mean c.

As in the discrete case it should be noted that the way in which one accepts the
value Y with probability f (Y)/cg(Y) is by generating a random number U and
then accepting Y if U � f (Y)/cg(Y).

74 5 Generating Continuous Random Variables

Example 5d Let us use the rejection method to generate a random variable
having density function

f (x) = 20x(1 − x)3, 0 < x < 1

Since this random variable (which is beta with parameters 2, 4) is concentrated in
the interval (0, 1), let us consider the rejection method with

g(x) = 1, 0 < x < 1

To determine the smallest constant c such that f (x)/g(x) � c, we use calculus to
determine the maximum value of

f (x)

g(x)
= 20x(1 − x)3

Differentiation of this quantity yields

d

dx

(
f (x)

g(x)

)
= 20 [(1 − x)3 − 3x(1 − x)2]

Setting this equal to 0 shows that the maximal value is attained when x = 1
4 and

thus
f (x)

g(x)
� 20

(
1

4

)(
3

4

)3

= 135

64
≡ c

Hence,
f (x)

cg(x)
= 256

27
x(1 − x)3

and thus the rejection procedure is as follows:

step 1: Generate random numbers U1 and U2.
step 2: If U2 � 256

27 U1(1 − U1)
3, stop and set X = U1. Otherwise, return to

Step 1.

The average number of times that Step 1 will be performed is c = 135
64 ≈ 2.11. �

Example 5e Suppose we wanted to generate a random variable having the
gamma (3

2 , 1) density
f (x) = K x1/2e−x , x > 0

where K = 1/�(3
2) = 2/

√
π . Because such a random variable is concentrated on

the positive axis and has mean 3
2 , it is natural to try the rejection technique with an

exponential random variable with the same mean. Hence, let

g(x) = 2

3
e−2x/3, x > 0

5.2 The Rejection Method 75

Now
f (x)

g(x)
= 3K

2
x1/2e−x/3

By differentiating and setting the resultant derivative equal to 0, we find that the
maximal value of this ratio is obtained when

1

2
x−1/2e−x/3 = 1

3
x1/2e−x/3

that is, when x = 3
2 . Hence

c = Max
f (x)

g(x)
= 3K

2

(
3

2

)1/2

e−1/2

= 33/2

(2πe)1/2
since K = 2/

√
π

Since
f (x)

cg(x)
= (2e/3)1/2x1/2e−x/3

we see that a gamma (3
2 , 1) random variable can be generated as follows:

step 1: Generate a random number U1 and set Y = − 3
2 log U1.

step 2: Generate a random number U2.
step 3: If U2 < (2eY/3)1/2e−Y/3, set X = Y . Otherwise, return to Step 1.

The average number of iterations that will be needed is

c = 3

(
3

2πe

)1/2

≈ 1.257. �

In the previous example, we generated a gamma random variable using the
rejection approach with an exponential distribution having the same mean as the
gamma. It turns out that this is always the most efficient exponential to use when
generating a gamma random variable. To verify this, suppose we want to generate
a random variable having density function

f (x) = K e−λx xα−1, x > 0

where λ > 0, α > 0, and K = λα/�(α). The preceding is the density function
of a gamma random variable with parameters α and λ and is known to have mean
α/λ.

Suppose we plan to generate the preceding type random variable by the rejection
method based on the exponential density with rate μ. Because

f (x)

g(x)
= K e−λx xα−1

μe−μx
= K

μ
xα−1e(μ−λ)x

76 5 Generating Continuous Random Variables

we see that when 0 < α < 1

lim
x→0

f (x)

g(x)
= ∞

thus showing that the rejection technique with an exponential can not be used in
this case. As the gamma density reduces to the exponential when α = 1, let us
suppose that α > 1. Now, when μ � λ

lim
x→∞

f (x)

g(x)
= ∞

and so we can restrict attention to values of μ that are strictly less than λ. With
such a value of μ, the mean number of iterations of the algorithm that will be
required is

c(μ) = Max
x

f (x)

g(x)
= Max

x

K

μ
xα−1e(μ−λ)x

To obtain the value of x at which the preceding maximum occurs, we differentiate
and set equal to 0 to obtain

0 = (α − 1)xα−2e(μ−λ)x − (λ − μ)xα−1e(μ−λ)x

yielding that the maximum occurs at

x = α − 1

λ − μ

Substituting back yields that

c(μ) = K

μ

(
α − 1

λ − μ

)α−1

e(μ−λ)
(

α−1
λ−μ

)

= K

μ

(
α − 1

λ − μ

)α−1

e1−α

Hence, the value of μ that minimizes c(μ) is that value that maximizes μ(λ−μ)α−1.
Differentiation gives

d

dμ
{μ(λ − μ)α−1} = (λ − μ)α−1 − (α − 1)μ(λ − μ)α−2

Setting the preceding equal to 0 yields that the best value of μ satisfies

λ − μ = (α − 1)μ

or
μ = λ/α

5.2 The Rejection Method 77

That is, the exponential that minimizes the mean number of iterations needed by
the rejection method to generate a gamma random variable with parameters α and
λ has the same mean as the gamma; namely, α/λ.

Our next example shows how the rejection technique can be used to generate
normal random variables.

Example 5f Generating a Normal Random Variable To
generate a standard normal random variable Z (i.e., one with mean 0 and variance
1), note first that the absolute value of Z has probability density function

f (x) = 2√
2π

e−x2/2 0 < x < ∞ (5.2)

We start by generating from the preceding density function by using the rejection
method with g being the exponential density function with mean 1—that is,

g(x) = e−x 0 < x < ∞
Now

f (x)

g(x)
= √

2/πex−x2/2

and so the maximum value of f (x)/g(x) occurs at the value of x that maximizes
x − x2/2. Calculus shows that this occurs when x = 1, and so we can take

c = Max
f (x)

g(x)
= f (1)

g(1)
= √

2e/π

Because

f (x)

cg(x)
= exp

{
x − x2

2
− 1

2

}

= exp

{
− (x − 1)2

2

}

it follows that we can generate the absolute value of a standard normal random
variable as follows:

step 1: Generate Y , an exponential random variable with rate 1.
step 2: Generate a random number U .
step 3: If U � exp{−(Y − 1)2/2}, set X = Y . Otherwise, return to Step 1.

Once we have simulated a random variable X having density function as in
Equation (5.1), —and such a random variable is thus distributed as the absolute
value of a standard normal—we can then obtain a standard normal Z by letting Z
be equally likely to be either X or −X .

In Step 3, the value Y is accepted if U � exp{−(Y −1)2/2}, which is equivalent
to − log U � (Y − 1)2/2. However, in Example 5b it was shown that − log U is
exponential with rate 1, and so the above is equivalent to the following:

78 5 Generating Continuous Random Variables

step 1: Generate independent exponentials with rate 1, Y1 and Y2.
step 2: If Y2 � (Y1 − 1)2/2, set X = Y1. Otherwise, return to Step 1.

Suppose now that the foregoing results in Y1 being accepted—and so we know
that Y2 is larger than (Y1 − 1)2/2. By how much does the one exceed the other? To
answer this, recall that Y2 is exponential with rate 1, and so, given that it exceeds
some value, the amount by which Y2 exceeds (Y1 − 1)2/2 [i.e., its “additional life”
beyond the time (Y1 − 1)2/2] is (by the memoryless property) also exponentially
distributed with rate 1. That is, when we accept in Step 2 not only do we obtain
X (the absolute value of a standard normal) but by computing Y2 − (Y1 − 1)2/2
we can also generate an exponential random variable (independent of X) having
rate 1.

Hence, summing up, we have the following algorithm that generates an
exponential with rate 1 and an independent standard normal random variable.

step 1: Generate Y1, an exponential random variable with rate 1.
step 2: Generate Y2, an exponential random variable with rate 1.
step 3: If Y2 − (Y1 − 1)2/2 > 0, set Y = Y2 − (Y1 − 1)2/2 and go to Step 4.

Otherwise, go to Step 1.
step 4: Generate a random number U and set

Z =
{

Y1 if U � 1
2

−Y 1 if U > 1
2

The random variables Z and Y generated by the foregoing are independent with
Z being normal with mean 0 and variance 1 and Y being exponential with rate 1.
(If you want the normal random variable to have mean μ and variable σ 2, just take
μ + σ Z .) �

Remarks

1. Since c = √
2e/π ≈ 1.32, the foregoing requires a geometric distributed

number of iterations of Step 2 with mean 1.32.
2. If we want to generate a sequence of standard normal random variables,

we can use the exponential random variable Y obtained in Step 3 as the
initial exponential needed in Step 1 for the next normal to be generated.
Hence, on the average, we can simulate a standard normal by generating
1.64(=2 × 1.32 − 1) exponentials and computing 1.32 squares.

3. The sign of the standard normal can be determined without generating a new
random number (as in Step 4). The first digit of an earlier random number
can be used. That is, an earlier random number r1, r2, . . . , rk should be used
as r2, r3, . . . , rk with r1 being used to determine the sign. �

5.2 The Rejection Method 79

The rejection method is particularly useful when we need to simulate a random
variable conditional on it being in some region. This is indicated by our next
example.

Example 5g Suppose we want to generate a gamma (2, 1) random variable
conditional on its value exceeding 5. That is, we want to generate a random variable
having density function

f (x) = xe−x∫∞
5 xe−x dx

= xe−x

6e−5
, x � 5

where the preceding integral was evaluated by using integration by parts. Because
a gamma (2, 1) random variable has expected value 2, we will use the rejection
method based on an exponential with mean 2 that is conditioned to be at least 5.
That is, we will use

g(x) =
1
2 e−x/2

e−5/2
, x � 5

Now,
f (x)

g(x)
= e5/2

3
xe−x/2, x � 5

Because xe−x/2 is a decreasing function of x when x � 5, it follows that the number
of iterations needed in the algorithm will be geometric with mean

c = Max
x�5

{
f (x)

g(x)

}
= f (5)

g(5)
= 5/3

To generate an exponential with rate 1/2 that is conditioned to exceed 5, we use
the fact that the amount by which it exceeds 5 is (by the lack of memory property
of exponential random variables) also exponential with rate 1/2. Therefore, if X is
exponential with rate 1/2, it follows that 5+ X has the same distribution as does X
conditioned to exceed 5. Therefore, we have the following algorithm to simulate
a random variable X having density function f .

step 1: Generate a random number U .
step 2: Set Y = 5 − 2 log(U).
step 3: Generate a random number U .

step 4: If U � e5/2

5 Y e−Y/2, set X = Y and stop; otherwise return to step 1. �

Just as we simulated a normal random variable in Example 5f by using the
rejection method based on an exponential random variable, we can also effectively
simulate a normal random variable that is conditioned to lie in some interval
by using the rejection method based on an exponential random variable. The
details (including the determination of the best exponential mean) are illustrated in
Section 8.8.

80 5 Generating Continuous Random Variables

Y (X, Y)

X

R

Θ

Figure 5.2. Polar Coordinates.

5.3 The Polar Method for Generating Normal Random
Variables

Let X and Y be independent standard normal random variables and let R and �

denote the polar coordinates of the vector (X, Y). That is (see Figure 5.2),

R2 = X 2 + Y 2

tan � = Y

X

Since X and Y are independent, their joint density is the product of their individual
densities and is thus given by

f (x, y) = 1√
2π

e−x2/2 1√
2π

e−y2/2

= 1

2π
e−(x2+y2)/2 (5.3)

To determine the joint density of R2 and �—call it f (d, θ)—we make the change
of variables

d = x2 + y2, θ = tan−1
(y

x

)
As the Jacobian of this transformation—that is, the determinant of partial
derivatives of d and θ with respect to x and y—is easily shown to equal 2, it
follows from Equation (5.3) that the joint density function of R2 and � is given by

f (d, θ) = 1

2

1

2π
e−d/2, 0 < d < ∞, 0 < θ < 2π

5.3 The Polar Method for Generating Normal Random Variables 81

However, as this is equal to the product of an exponential density having mean 2
(namely, 1

2 e−d/2) and the uniform density on (0, 2π) [namely, (2π)−1], it follows
that

R2 and � are independent, with R2 being exponential with mean 2 and

� being uniformly distributed over (0, 2π) (5.4)

We can now generate a pair of independent standard normal random variables
X and Y by using (5.4) to first generate their polar coordinates and then transform
back to rectangular coordinates. This is accomplished as follows:

step 1: Generate random numbers U1 and U2.
step 2: R2 = −2 log U1 (and thus R2 is exponential with mean 2). � = 2π U2

(and thus � is uniform between 0 and 2π).
step 3: Now let

X = R cos � = √−2 log U1 cos(2πU2)

Y = R sin � = √−2 log U1 sin(2πU2) (5.5)

The transformations given by Equations (5.5) are known as the Box–Muller
transformations.

Unfortunately, the use of the Box–Muller transformations (5.5) to generate a
pair of independent standard normals is computationally not very efficient: The
reason for this is the need to compute the sine and cosine trigonometric functions.
There is, however, a way to get around this time-consuming difficulty by a indirect
computation of the sine and cosine of a random angle (as opposed to a direct
computation which generates U and then computes the sine and cosine of 2πU).
To begin, note that if U is uniform on (0, 1) then 2U is uniform on (0, 2) and so
2U − 1 is uniform on (−1, 1). Thus, if we generate random numbers U1 and U2

and set

V1 = 2U1 − 1

V2 = 2U2 − 1

then (V1, V2) is uniformly distributed in the square of area 4 centered at (0, 0)—see
Figures 5.3.

Suppose now that we continually generate such pairs (V1, V2) until we obtain
one that is contained in the circle of radius 1 centered at (0, 0)—that is, until
(V1, V2) is such that V 2

1 + V 2
2 � 1. It now follows that such a pair (V1, V2) is

uniformly distributed in the circle. If we let R and � denote the polar coordinates
of this pair, then it is not difficult to verify that R and � are independent, with R2

being uniformly distributed on (0, 1) (see Exercise 21) and with � being uniformly
distributed over (0, 2π). Since � is thus a random angle, it follows that we can
generate the sine and cosine of a random angle � by generating a random point

82 5 Generating Continuous Random Variables

(−1, 1) (1, 1)

(1, −1)(−1, −1)

R

V1

V2

= (0, 0)

Θ

Figure 5.3. (V1, V2) Uniformly Distributed in the Square.

(V1, V2) in the circle and then setting

sin � = V2

R
= V2(

V 2
1 + V 2

2

)1/2

cos � = V1

R
= V1(

V 2
1 + V 2

2

)1/2

It now follows from the Box–Muller transformation (5.5) that we can generate
independent standard normals by generating a random number U and setting

X = (−2 log U)1/2 V1(
V 2

1 + V 2
2

)1/2

Y = (−2 log U)1/2 V2(
V 2

1 + V 2
2

)1/2 (5.6)

In fact, since R2 = V 2
1 + V 2

2 is itself uniformly distributed over (0, 1) and is
independent of the random angle �, we can use it as the random number U needed
in Equations (5.6). Therefore, letting S = R2, we obtain that

X = (−2 log S)1/2 V1

S1/2
= V1

(−2 log S

S

)1/2

Y = (−2 log S)1/2 V2

S1/2
= V2

(−2 log S

S

)1/2

5.4 Generating a Poisson Process 83

are independent standard normals when (V1, V2) is a randomly chosen point in the
circle of radius 1 centered at the origin, and S = V 2

1 + V 2
2 .

Summing up, we thus have the following approach to generating a pair of
independent standard normals:

step 1: Generate random numbers, U1 and U2.
step 2: Set V1 = 2U1 − 1, V2 = 2U2 − 1, S = V 2

1 + V 2
2 .

step 3: If S > 1 return to Step 1.
step 4: Return the independent standard normals.

X =
√−2 log S

S
V1, Y =

√−2 log S

S
V2

The above is called the polar method. Since the probability that a random point
in the square will fall within the circle is equal to π/4 (the area of the circle
divided by the area of the square), it follows that, on average, the polar method will
require 4/π = 1.273 iterations of Step 1. Hence it will, on average, require 2.546
random numbers, 1 logarithm, 1 square root, 1 division, and 4.546 multiplications
to generate two independent unit normals.

5.4 Generating a Poisson Process

Suppose we wanted to generate the first n event times of a Poisson process with
rate λ. To do so we make use of the result that the times between successive events
for such a process are independent exponential random variables each with rate λ.
Thus, one way to generate the process is to generate these interarrival times. So if
we generate n random numbers U1, U2, . . . , Un and set Xi = − 1

λ
log Ui , then Xi

can be regarded as the time between the (i − 1)st and the i th event of the Poisson
process. Since the actual time of the j th event will equal the sum of the first j
interarrival times, it thus follows that the generated values of the first n event times
are

∑ j
i=1 Xi , j = 1, . . . , n.

If we wanted to generate the first T time units of the Poisson process, we can
follow the preceding procedure of successively generating the interarrival times,
stopping when their sum exceeds T . That is, the following algorithm can be used
to generate all the event times occurring in (0, T) of a Poisson process having rate
λ. In the algorithm t refers to time, I is the number of events that have occurred
by time t , and S(I) is the most recent event time.

Generating the First T Time Units of a Poisson Process with
Rate λ

step 1: t = 0, I = 0.
step 2: Generate a random number U .
step 3: t = t − 1

λ
log U . If t > T , stop.

84 5 Generating Continuous Random Variables

step 4: I = I + 1, S(I) = t .
step 5: Go to Step 2.

The final value of I in the preceding algorithm will represent the number of events
that occur by time T , and the values S(1), . . . , S(I) will be the I event times in
increasing order.

Another way to simulate the first T time units of a Poisson process with rate
λ starts by simulating N (T), the total number of events that occur by time T .
Because N (T) is Poisson with mean λT , this is easily accomplished by one of the
approaches given in Chapter 4. If the simulated value of N (T) is n, then n random
numbers U1, . . . , Un are generated, and {T U1, . . . , T Un} are taken as the set of
event times by time T of the Poisson process. This works because conditional on
N (T) = n, the unordered set of event times are distributed as a set of n independent
uniform (0, t) random variables.

To verify that the preceding method works, let N (t) equal the number of
values in the set {T U1, . . . , T UN (T)} that are less than t . We must now argue
that N (t), 0 � t � T , is a Poisson process. To show that it has independent
and stationary increments, let I1, . . . , Ir be r disjoint time intervals in the interval
[0, T]. Say that the i th Poisson event is a type i event if T Ui lies in the i th of these
r disjoint time intervals, i = 1, . . . , r , and say it is type r + 1 if it does not lie in
any of the r intervals. Because the Ui , i � 1, are independent, it follows that each
of the Poisson number of events N (T) is independently classified as being of one
of the types 1, . . . , r + 1, with respective probabilities p1, . . . , pr+1, where pi is
the length of the interval Ii divided by T when i � r , and pr+1 = 1 −∑r

i=1 pi .
It now follows, from the results of Section 2.8, that N1, . . . , Nr , the numbers of
events in the disjoint intervals, are independent Poisson random variables, with
E[Ni] equal to λ multiplied by the length of the interval Ii ; which establishes that
N (t), 0 � t � T , has stationary as well as independent increments. Because the
number of events in any interval of length h is Poisson distributed with mean λh,
we have

lim
h→0

P{N (h) = 1}
h

= lim
h→0

λhe−λh

h
= λ

and

lim
h→0

P{N (h) � 2}
h

= lim
h→0

1 − e−λh − λhe−λh

h
= 0

which completes the verification.

If all we wanted was to simulate the set of event times of the Poisson process, then
the preceding approach would be more efficient than simulating the exponentially
distributed interarrival times. However, we usually desire the event times in
increasing order; thus, we would also need to order the values T Ui , i = 1, . . . , n.

5.5 Generating a Nonhomogeneous Poisson Process 85

5.5 Generating a Nonhomogeneous Poisson Process

An extremely important counting process for modeling purposes is the
nonhomogeneous Poisson process, which relaxes the Poisson process assumption
of stationary increments. Thus, it allows for the possibility that the arrival rate need
not be constant but can vary with time. It is usually very difficult to obtain analytical
results for a mathematical model that assumes a nonhomogeneous Poisson arrival
process, and as a result such processes are not applied as often as they should be.
However, because simulation can be used to analyze such models, we expect that
such mathematical models will become more common.

Suppose that we wanted to simulate the first T time units of a nonhomogeneous
Poisson process with intensity function λ(t). The first method we present, called
the thinning or random sampling approach, starts by choosing a value λ which is
such that

λ(t) � λ for all t � T

Now, as shown in Chapter 2, such a nonhomogeneous Poisson process can be
generated by a random selection of the event times of a Poisson process having
rate λ. That is, if an event of a Poisson process with rate λ that occurs at time t is
counted (independently of what has transpired previously) with probability λ(t)/λ,
then the process of counted events is a nonhomogeneous Poisson process with
intensity function λ(t), 0 � t � T . Hence, by simulating a Poisson process and
then randomly counting its events, we can generate the desired nonhomogeneous
Poisson process. This can be written algorithmically as follows.

Generating the First T Time Units of a Nonhomogeneous
Poisson Process

step 1: t = 0, I = 0.
step 2: Generate a random number U .
step 3: t = t − 1

λ
log U . If t > T , stop.

step 4: Generate a random number U .
step 5: If U � λ(t)/λ, set I = I + 1, S(I) = t .
step 6: Go to Step 2.

In the above λ(t) is the intensity function and λ is such that λ(t) � λ. The final
value of I represents the number of events time T , and S(1), . . . , S(I) are the
event times.

The above procedure, referred to as the thinning algorithm (because it “thins”
the homogeneous Poisson points), is clearly most efficient, in the sense of having
the fewest number of rejected events times, when λ(t) is near λ throughout the
interval. Thus, an obvious improvement is to break up the interval into subintervals
and then use the procedure over each subinterval. That is, determine appropriate
values k, 0 = t0 < t1 < t2 < · · · < tk < tk+1 = T, λ1, . . . , λk+1 such that

λ(s) � λi if ti−1 � s < ti , i = 1, . . . , k + 1 (5.7)

86 5 Generating Continuous Random Variables

Now generate the nonhomogeneous Poisson process over the interval (ti−1, ti) by
generating exponential random variables with rate λi , and accepting the generated
event occurring at time s, s ∈ (ti−1, ti), with probability λ(s)/λi . Because of the
memoryless property of the exponential and the fact that the rate of an exponential
can be changed upon multiplication by a constant, it follows that there is no loss of
efficiency in going from one subinterval to the next. That is, if we are at t ∈ (ti−1, ti)

and generate X , an exponential with rate λi , which is such that t + X > ti , then
we can use λi [X − (ti − t)]/λi+1 as the next exponential with rate λi+1.

We thus have the following algorithm for generating the first T time units of a
nonhomogeneous Poisson process with intensity function λ(s) when the relations
(5.7) are satisfied. In the algorithm t represents the present time, J the present
interval (i.e., J = j when t j−1 � t < t j), I the number of events so far, and
S(1), . . . , S(I) the event times.

Generating the First T Time Units of a Nonhomogeneous
Poisson Process

step 1: t = 0, J = 1, I = 0.
step 2: Generate a random number U and set X = −1

λJ
log U .

step 3: If t + X > tJ , go to Step 8.
step 4: t = t + X .
step 5: Generate a random number U .
step 6: If U � λ(t)/λJ , set I = I + 1, S(I) = t.
step 7: Go to Step 2.
step 8: If J = k + 1, stop.
step 9: X = (X − tJ + t)λJ /λJ+1, t = tJ , J = J + 1.
step 10: Go to Step 3.

Suppose now that over some subinterval (ti−1, ti) we have that λi > 0, where

λi ≡ Infimum{λ(s): ti−1 � s < ti }
In such a situation we should not use the thinning algorithm directly but rather
should first simulate a Poisson process with rate λi over the desired interval and
then simulate a nonhomogeneous Poisson process with the intensity function
λ(s) = λ(s) − λi when s ∈ (ti−1, ti). (The final exponential generated for the
Poisson process, which carries one beyond the desired boundary, need not be
wasted but can be suitably transformed so as to be reusable.) The superposition
(or merging) of the two processes yields the desired process over the interval. The
reason for doing it this way is that it saves the need to generate uniform random
variables for a Poisson distributed number, with mean λi (ti − ti−1), of the event
times. For example, consider the case where

λ(s) = 10 + s, 0 < s < 1

5.5 Generating a Nonhomogeneous Poisson Process 87

Using the thinning method with λ = 11 would generate an expected number of
11 events, each of which would require a random number to determine whether
or not it should be accepted. On the other hand, to generate a Poisson process
with rate 10 and then merge it with a nonhomogeneous Poisson process with rate
λ(s) = s, 0 < s < 1 (generated by the thinning algorithm with λ = 1), would
yield an equally distributed number of event times but with the expected number
needing to be checked to determine acceptance being equal to 1.

A second method for simulating a nonhomogeneous Poisson process having
intensity function λ(t), t > 0, is to directly generate the successive event times. So
let S1, S2, . . . denote the successive event times of such a process. As these random
variables are clearly dependent, we generate them in sequence—starting with S1,
and then using the generated value of S1 to generate S2, and so on.

To start, note that if an event occurs at time s, then, independent of what has
occurred prior to s, the additional time until the next event has the distribution Fs ,
given by

Fs(x) = P{time from s until next event is less than x |event at s}
= P{next event is before x + s|event at s}
= P{event between s and s + x |event at s}
= P{event between s and s + x} by independent increments

= 1 − P{0 events in(s, s + x)}
= 1 − exp

(
−
∫ s+x

s
λ(y) dy

)

= 1 − exp

(
−
∫ x

0
λ(s + y)dy

)
(5.8)

We can now simulate the event times S1, S2, . . . by generating S1 from the
distribution F0; if the simulated value of S1 is s1, we generate S2 by adding s1 to
a generated value from the distribution Fs1 ; if this sum is s2 we generate S3 by
adding s2 to a generated value from the distribution Fs2 ; and so on. The method
used to simulate from these distributions should of course depend on their form.
In the following example the distributions Fs are easily inverted and so the inverse
transform method can be applied.

Example 5h Suppose that λ(t) = 1/(t +a), t � 0, for some positive constant
a. Then ∫ x

0
λ(s + y)dy =

∫ x

0

1

s + y + a
dy = log

(
x + s + a

s + a

)

Hence, from Equation (5.8),

Fs(x) = 1 − s + a

x + s + a
= x

x + s + a

88 5 Generating Continuous Random Variables

To invert this, suppose that x = F−1
s (u), and so

u = Fs(x) = x

x + s + a

or, equivalently,

x = u(s + a)

1 − u
That is,

F−1
s (u) = (s + a)

u

1 − u
We can therefore generate the successive event times S1, S2, . . . by generating
random numbers U1, U2, . . . and then recursively setting

S1 = aU1

1 − U1

S2 = S1 + (S1 + a)
U2

1 − U2
= S1 + aU2

1 − U2

and, in general,

Sj = Sj−1 + (Sj−1 + a)
U j

1 − U j
= Sj−1 + aU j

1 − U j
, j � 2 �

5.6 Simulating a Two-Dimensional Poisson Process

A process consisting of randomly occurring points in the plane is said to constitute
a two-dimensional Poisson process having rate λ, λ > 0, if

1. The number of points occurring in any given region of area A is Poisson
distributed with mean λA.

2. The numbers of points occurring in disjoint regions are independent.

For a given fixed point 0 in the plane, we now show how to simulate points,
according to a two-dimensional Poisson process with rate λ, that occur in a circular
region of radius r centered at 0.

Let C(a) denote the circle of radius a centered at 0, and note that, from
Condition 1, the number of points in C(a) is Poisson distributed with mean
λπa2. Let Ri , i ≥ 1, denote the distance from the origin 0 to its i th nearest point
(Figure 5.4). Then

P
{
π R2

1 > x
} = P{R1 >

√
x/π}

= P

{
no points in C

(√
x

π

)}
= e−λx

5.6 Simulating a Two-Dimensional Poisson Process 89

R3
R1

0 R2

R4

Figure 5.4. Two Dimensional Poisson Process.

where the last equality uses the fact that the area of C(
√

x/π) is x . Also, with
C(b) − C(a) denoting the region between C(b) and C(a), a < b, we have

P
{
π R2

2 − π R2
1 > x |R1 = a

}
= P

⎧⎨
⎩R2 >

√
x + π R2

1

π
|R1 = a

⎫⎬
⎭

= P

{
no points in C

(√
x + πa2

π

)
− C(a)|R1 = a

}

= P

{
no points in C

(√
x + πa2

π

)
− C(a)

}
by Condition 2

= e−λx

In fact, the same argument can be repeated continually to obtain the following
proposition.

Proposition With R0 = 0, π R2
i −π R2

i−1, i ≥ 1, are independent exponential
random variables each having rate λ.

In other words, the amount of area that need be traversed to encounter a Poisson
point is exponential with rate λ. Since, by symmetry, the respective angles of the
Poisson points are independent and uniformly distributed over (0, 2π), we thus
have the following algorithm for simulating the Poisson process over a circular
region of radius r about 0.

90 5 Generating Continuous Random Variables

step 1: Generate independent exponentials with rate λ, X1, X2, . . ., stopping at

N = Min{n: X1 + · · · + Xn > πr 2}
step 2: If N = 1 stop; there are no points in C(r). Otherwise, for i = 1, . . . , N−1,

set

Ri =
√

X1 + · · · + Xi

π

(that is, π R2
i = X1 + · · · + Xi).

step 3: Generate random numbers U1, . . . , UN−1.
step 4: The polar coordinates of the N − 1 Poisson points are

(Ri , 2πUi), i = 1, . . . , N − 1

The above algorithm can be considered as the fanning out from a circle centered
at 0 with a radius that expands continuously from 0 to r . The successive radii at
which points are encountered are simulated by using the result that the additional
area necessary to explore until one encounters another point is always exponentially
distributed with rate λ. This fanning-out technique can also be used to simulate the
process over noncircular regions. For example, consider a nonnegative function
f (x) and suppose that we are interested in simulating the Poisson process in the
region between the x-axis and the function f (Figure 5.5) with x going from 0
to T . To do so, we can start at the left-hand edge and fan vertically to the right
by considering the successive areas encountered. Specifically, if X1 < X2 < · · ·
denote the successive projections of the Poisson process points on the x-axis, it
follows in exactly the same manner as before that (with X0 = 0)∫ Xi

Xi−1

f (x) dx, i = 1, . . . , are independent with rate λ

Hence, we can simulate the Poisson points by generating independent exponential
random variables with rate λ, W1, W2, . . ., stopping at

N = Min

{
n: W1 + · · · + Wn >

∫ T

0
f (x)dx

}

We now determine X1, . . . , X N−1 by using the equations∫ X1

0
f (x)dx = W1∫ X2

X1

f (x)dx = W2

...∫ X N−1

X N−2

f (x)dx = WN−1

Exercises 91

f (x)

T

Figure 5.5. Graph of f.

Because the projection on the y-axis of the point whose x-coordinate is Xi is
clearly uniformly distributed over (0, f (Xi)), it thus follows that if we now
generate random numbers U1, . . . , UN−1, then the simulated Poisson points are, in
rectangular coordinates, (Xi , Ui f (Xi)), i = 1, . . . , N − 1.

The above procedure is most useful when f is regular enough so that the above
equations can be efficiently solved for the values of Xi . For example, if f (x) = c
(and so the region is a rectangle), we can express Xi as

Xi = W1 + · · · + Wi

c

and the Poisson points are

(Xi , cUi), i = 1, . . . , N − 1

Exercises

1. Give a method for generating a random variable having density function

f (x) = ex/(e − 1), 0 � x � 1

2. Give a method to generate a random variable having density function

f (x) =
{

x−2
2 if 2 � x � 3

2−x/3
2 if 3 � x � 6

3. Use the inverse transform method to generate a random variable having
distribution function

F(x) = x2 + x

2
, 0 � x � 1

92 5 Generating Continuous Random Variables

4. Give a method for generating a random variable having distribution function

F(x) = 1 − exp(−αxβ), 0 < x < ∞
A random variable having such a distribution is said to be a Weibull random
variable.

5. Give a method for generating a random variable having density function

f (x) =
{

e2x , −∞ < x < 0
e−2x , 0 < x < ∞

6. Let X be an exponential random variable with mean 1. Give an efficient
algorithm for simulating a random variable whose distribution is the
conditional distribution of X given that X < 0.05. That is, its density function
is

f (x) = e−x

1 − e−0.05
, 0 < x < 0.05

Generate 1000 such variables and use them to estimate E[X |X < 0.05]. Then
determine the exact value of E[X |X < 0.05].

7. (The Composition Method) Suppose it is relatively easy to generate random
variables from any of the distributions Fi , i = 1, . . . , n. How could we
generate a random variable having the distribution function

F(x) =
n∑

i=1

pi Fi (x)

where pi , i = 1, . . . , n, are nonnegative numbers whose sum is 1?
8. Using the result of Exercise 7, give algorithms for generating random variables

from the following distributions.

(a) F(x) = x+x3+x5

3 , 0 � x � 1

(b) F(x) =
{

1−e−2x +2x
3 if0 < x < 1

3−e−2x

3 if1 < x < ∞
(c) F(x) = ∑n

i=1 αi x i , 0 � x � 1, where αi � 0,
∑n

i=1 αi = 1

9. Give a method to generate a random variable having distribution function

F(x) =
∫ ∞

0
x ye−y dy, 0 � x � 1

[Hint: Think in terms of the composition method of Exercise 7. In particular,
let F denote the distribution function of X , and suppose that the conditional
distribution of X given that Y = y is

P{X � x |Y = y} = x y, 0 � x � 1

Exercises 93

10. A casualty insurance company has 1000 policyholders, each of whom will
independently present a claim in the next month with probability .05.
Assuming that the amounts of the claims made are independent exponential
random variables with mean $800, use simulation to estimate the probability
that the sum of these claims exceeds $50,000.

11. Write an algorithm that can be used to generate exponential random variables
in sets of 3. Compare the computational requirements of this method with the
one presented after Example 5c which generates them in pairs.

12. Suppose it is easy to generate random variable from any of the distribution
Fi , i = 1, . . . , n. How can we generate from the following distributions?

(a) F(x) = ∏n
i=1 Fi (x)

(b) F(x) = 1 −∏n
i=1[1 − Fi (x)]

[Hint: If Xi , i = 1, . . . , n, are independent random variables, with Xi having
distribution Fi , what random variable has distribution function F?]

13. Using the rejection method and the results of Exercise 12, give two other
methods, aside from the inverse transform method, that can be used to generate
a random variable having distribution function

F(x) = xn, 0 � x � 1

Discuss the efficiency of the three approaches to generating from F .
14. Let G be a distribution function with density g and suppose, for constants

a < b, we want to generate a random variable from the distribution function

F(x) = G(x) − G(a)

G(b) − G(a)
, a � x � b

(a) If X has distribution G, then F is the conditional distribution of X given
what information?

(b) Show that the rejection method reduces in this case to generating a random
variable X having distribution G and then accepting it if it lies between a
and b.

15. Give two methods for generating a random variable having density function

f (x) = xe−x , 0 � x < ∞
and compare their efficiency.

16. Give two algorithms for generating a random variable having distribution
function

F(x) = 1 − e−x − e−2x + e−3x , x > 0

17. Give two algorithms for generating a random variable having density function

f (x) = 1

4
+ 2x3 + 5

4
x4, 0 < x < 1

94 5 Generating Continuous Random Variables

18. Give an algorithm for generating a random variable having density function

f (x) = 2xe−x2
, x > 0

19. Show how to generate a random variable whose distribution function is

F(x) = 1

2
(x + x2), 0 ≤ x ≤ 1

using

(a) the inverse transform method;
(b) the rejection method;
(c) the composition method.

Which method do you think is best for this example? Briefly explain your
answer.

20. Use the rejection method to find an efficient way to generate a random variable
having density function

f (x) = 1

2
(1 + x)e−x , 0 < x < ∞

21. When generating a gamma random variable with parameters (α, 1), α < 1, that
is conditioned to exceed c by using the rejection technique with an exponential
conditioned to exceed c, what is the best exponential to use? Is it necessarily
the one with mean α, the mean of the gamma (α, 1) random variable?

22. Give an algorithm that generates a random variable having density

f (x) = 30(x2 − 2x3 + x4), 0 � x � 1

Discuss the efficiency of this approach.
23. Give an efficient method to generate a random variable X having density

f (x) = 1

.000336
x(1 − x)3, .8 < x < 1

24. In Example 5f we simulated a normal random variable by using the rejection
technique with an exponential distribution with rate 1. Show that among all
exponential density functions g(x) = λe−λx the number of iterations needed
is minimized when λ = 1.

25. Write a program that generates normal random variables by the method of
Example 5f.

26. Let (X, Y) be uniformly distributed in a circle of radius 1. Show that if R
is the distance from the center of the circle to (X, Y) then R2 is uniform
on (0, 1).

Bibliography 95

27. Write a program that generates the first T time units of a Poisson process
having rate λ.

28. To complete a job a worker must go through k stages in sequence. The time to
complete stage i is an exponential random variable with rate λi , i = 1, . . . , k.
However, after completing stage i the worker will only go to the next stage
with probability αi , i = 1, . . . , k − 1. That is, after completing stage i the
worker will stop working with probability 1−αi . If we let X denote the amount
of time that the worker spends on the job, then X is called a Coxian random
variable. Write an algorithm for generating such a random variable.

29. Buses arrive at a sporting event according to a Poisson process with rate 5
per hour. Each bus is equally likely to contain either 20, 21,…, 40 fans, with
the numbers in the different buses being independent. Write an algorithm to
simulate the arrival of fans to the event by time t = 1.

30.

(a) Write a program that uses the thinning algorithm to generate the first 10
time units of a nonhomogeneous Poisson process with intensity function

λ(t) = 3 + 4

t + 1

(b) Give a way to improve upon the thinning algorithm for this example.

31. Give an efficient algorithm to generate the first 10 times units of a
nonhomogeneous Poisson process having intensity function

λ(t) =
{

t
5 , 0 < t < 5

1 + 5(t − 5), 5 < t < 10

32. Write a program to generate the points of a two-dimensional Poisson process
within a circle of radius R, and run the program for λ = 1 and R = 5. Plot the
points obtained.

Bibliography

Dagpunar, T., Principles of Random Variate Generation. Clarendon Press, Oxford, 1988.
Devroye, L., Nonuniform Random Variate Generation. Springer-Verlag, New York, 1986.
Fishman, G. S., Principles of Discrete Event Simulation. Wiley, New York, 1978.
Knuth, D., The Art of Computer Programming, Vol. 2, 2nd ed., Seminumerical Algorithms.

Addison-Wesley, Reading, MA, 2000.
Law, A. M., and W. D. Kelton, Simulation Modelling and Analysis, 3rd ed. McGraw-Hill,

New York, 1997.

96 5 Generating Continuous Random Variables

Lewis, P. A. W., and G. S. Shedler, “Simulation of Nonhomogeneous Poisson Processes by
Thinning,” Nav. Res. Log. Quart., 26, 403–413, 1979.

Marsaglia, G., “Generating Discrete Random Variables in a Computer,” Commun. Assoc.
Comput. Mach., 6, 37–38, 1963.

Morgan, B. J. T., Elements of Simulation. Chapman and Hall, London, 1983.
Ripley, B. D., “Computer Generation of Random Variables: A Tutorial,” Inst. Statist.

Rev., 51, 301–319, 1983.
Ripley, B. D., Stochastic Simulation. Wiley, New York, 1986.
Rubenstein, R. Y., Simulation and the Monte Carlo Method. Wiley, New York, 1981.
Schmeiser, B. W., “Random Variate Generation, a Survey,” Proc. 1980 Winter Simulation

Conf., Orlando, FL; pp. 79–104, 1980.

6The Multivariate
Normal Distribution

and Copulas

Introduction

In this chapter we introduce the multivariate normal distribution and show how to
generate random variables having this joint distribution. We also introduce copulas
which are useful when choosing joint distributions to model random variables
whose marginal distributions are known.

6.1 The Multivariate Normal

Let Z1, . . . , Zm be independent and identically distributed normal random
variables, each with mean 0 and variance 1. If for constants ai, j , i = 1, . . . , n,
j = 1, . . . , m, and μi , i = 1, . . . , n,

X1 = a11 Z1 + a12 Z2 + · · · + a1m Zm + μ1

· · · = · · ·
· · · = · · ·
Xi = ai1 Z1 + ai2 Z2 + · · · + aim Zm + μi

· · ·
· · ·
Xn = an1 Z1 + an2 Z2 + · · · + anm Zm + μn

then the vector X1, . . . , Xn is said to have a multivariate normal distribution. That
is, Xi , . . . , Xn has a multivariate normal distribution if each is a constant plus
a linear combination of the same set of independent standard normal random
variables. Because the sum of independent normal random variables is itself
normal, it follows that each Xi is itself a normal random variable.

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00006-1
© 2013 Elsevier Inc. All rights reserved. 97

http://dx.doi.org/10.1016/B978-0-12-415825-2.00006-1

98 6 The Multivariate Normal Distribution and Copulas

The means and covariances of multivariate normal random variables are as
follows:

E[Xi] = μi

and

Cov(Xi , X j) = Cov

(
m∑

k=1

aik Zk,

m∑
r=1

a jr Zr

)

=
m∑

k=1

m∑
r=1

Cov(aik Zk, a jr Zr)

=
m∑

k=1

m∑
r=1

aika jr Cov(Zk, Zr)

=
m∑

k=1

aika jk (6.1)

where the preceding used that

Cov(Zk, Zr) =
{

1, if r = k
0, if r �= k

The preceding can be compactly expressed in matrix notation. Namely, if we let
A be the n × m matrix whose row i column j element is ai j , then the defining
equation of the multivariate normal is

X′ = AZ′ + µ′ (6.2)

where X = (X1, . . . , Xn) is the multivariate normal vector, Z = (Z1, . . . , Zm) is
the row vector of independent standard normals, µ = (μ1, . . . , μn) is the vector of
means, and where B′ is the transpose of the matrix B. Because Equation (6.1) states
that Cov(Xi , X j) is the element in row i column j of the matrix AA′, it follows
that if C is the matrix whose row i column j element is ci j = Cov(Xi , X j), then
Equation (6.1) can be written as

C = AA′ (6.3)

An important property of multivariate normal vectors is that the joint distribution
of X = (Xi , . . . , Xn) is completely determined by the quantities E[Xi] and
Cov(Xi , X j), i, j = 1, . . . , n. That is, the joint distribution is determined by
knowledge of the mean vector µ = (μ1, . . . , μn) and the covariance matrix C.
This result can be proved by calculating the joint moment generating function
of X1, . . . , Xn , namely E[exp

{∑n
i=1 ti Xi

}], which is known to completely
specify the joint distribution. To determine this quantity, note first that

∑n
i=1 ti Xi

is itself a linear combination of the independent normal random variables

6.2 Generating a Multivariate Normal Random Vector 99

Z1, . . . , Zm , and is thus also a normal random variable. Hence, using that
E
[
eW
] = exp {E[W] + Var(W)/2} when W is normal, we see that

E

[
exp

{
n∑

i=1

ti Xi

}]
= exp

{
E

[
n∑

i=1

ti Xi

]
+ Var

(
n∑

i=1

ti Xi

)/
2

}

As

E

[
n∑

i=1

ti Xi

]
=

n∑
i=1

tiμi

and

Var

(
n∑

i=1

ti Xi

)
= Cov

(
n∑

i=1

ti Xi ,

n∑
j=1

t j X j

)

=
n∑

i=1

n∑
j=1

ti t j Cov(Xi , X j)

we see that the joint moment generating function, and thus the joint distribution,
of the multivariate normal vector is specified by knowledge of the mean values
and the covariances.

6.2 Generating a Multivariate Normal Random Vector

Suppose now that we want to generate a multivariate normal vector
X = (X1, . . . , Xn) having a specified mean vector µ and covariance matrix C.
Using Equations (6.2) and (6.3) along with the fact that the distribution of X is
determined by its mean vector and covariance matrix, one way to accomplish this
would be to first find a matrix A such that

C = AA′

then generate independent standard normals Z1, . . . , Zn and set

X′ = AZ′ + µ′

To find such a matrix A we can make use of a result known as the Choleski
decomposition, which states that for any n × n symmetric and positive definite
matrix M, there is an n × n lower triangular matrix A such that M = AA′, where
by lower triangular we mean that all elements in the upper triangle of the matrix
are equal to 0. (That is, a matrix is lower triangular if the element in row i column
j is 0 whenever i < j .) Because a covariance matrix C will be symmetric (as
Cov(Xi , X j) = Cov(X j , Xi)) and as we will assume that it is positive definite
(which is usually the case) we can use the Choleski decomposition to find such a
matrix A.

100 6 The Multivariate Normal Distribution and Copulas

Example 6a The Bivariate Normal Distribution Suppose we want
to generate the multivariate normal vector X1, X2, having means μi , variances σ 2

i ,
i = 1, 2, and covariance c = Cov(X1, X2). (When n = 2, the multivariate normal
vector is called a bivariate normal.) If the Choleski decomposition matrix is

A =
[

a11 0
a21 a22

]
(6.4)

then we need to solve[
a11 0
a21 a22

]
∗
[

a11 a21

0 a22

]
=
[

σ 2
1 c
c σ 2

2

]

That is, [
a2

11 a11a21

a11a21 a2
21 + a2

22

]
=
[

σ 2
1 c
c σ 2

2

]

This yields that

a2
11 = σ 2

1

a11a21 = c

a2
21 + a2

22 = σ 2
2

Letting ρ = c
σ1σ2

be the correlation between X1 and X2, the preceding gives that

a11 = σ1

a21 = c/σ1 = ρσ2

a22 =
√

σ 2
2 − ρ2σ 2

2 = σ2

√
1 − ρ2

Hence, letting

A =
[

σ1 0
ρσ2 σ2

√
1 − ρ2

]
(6.5)

we can generate X1, X2 by generating independent standard normals Z1 and Z2

and then setting
X′ = AZ′ + µ′

That is,

X1 = σ1 Z1 + μ1

X2 = ρσ2 Z1 + σ2

√
1 − ρ2 Z2 + μ2

6.2 Generating a Multivariate Normal Random Vector 101

The preceding can also be used to derive the joint density of the bivariate normal
vector X1, X2. Start with the joint density function of Z1, Z2 :

fZ1,Z2(z1, z2) = 1

2π
exp

{
−1

2

(
z2

1 + z2
2

)}

and consider the transformation

x1 = σ1z1 + μ1 (6.6)

x2 = ρσ2z1 + σ2

√
1 − ρ2 z2 + μ2 (6.7)

The Jacobian of this transformation is

J =
∣∣∣∣∣ σ1 0
ρσ2 σ2

√
1 − ρ2

∣∣∣∣∣ = σ1σ2

√
1 − ρ2 (6.8)

Moreover, the transformation yields the solution

z1 = x1 − μ1

σ1

z2 = x2 − μ2 − ρ
σ2
σ1

(x1 − μ1)

σ2

√
1 − ρ2

giving that

z2
1 + z2

2 = (x1 − μ1)
2

σ 2
1

(
1 + ρ2

1 − ρ2

)
+ (x2 − μ2)

2

σ 2
2 (1 − ρ2)

− 2ρ

σ1σ2(1 − ρ2)
(x1 − μ1)(x2 − μ2)

= (x1 − μ1)
2

σ 2
1 (1 − ρ2)

+ (x2 − μ2)
2

σ 2
2 (1 − ρ2)

− 2ρ

σ1σ2(1 − ρ2)
(x1 − μ1)(x2 − μ2)

Thus, we obtain that the joint density of X1, X2 is

fX1,X2(x1, x2) = 1

|J | fZ1,Z2

(
x1 − μ1

σ1
,

x2 − μ2 − ρ
σ2
σ1

(x1 − μ1)

σ2

√
1 − ρ2

)

= C exp

{
− 1

2(1 − ρ2)

[(
x1 − μ1

σ1

)2

+
(

x2 − μ2

σ2

)2

− 2ρ

σ1σ2
(x1 − μ1)(x2 − μ2)

]}

where C = 1

2πσ1σ2

√
1−ρ2

. �

102 6 The Multivariate Normal Distribution and Copulas

It is generally easy to solve the equations for the Choleski decomposition of an
n × n covariance matrix C. As we take the successive elements of the matrix AA′

equal to the corresponding values of the matrix C, the computations are easiest if
we look at the elements of the matrices by going down successive columns. That
is, we equate the element in row i column j of AA′ to ci j in the following order
of (i, j):

(1, 1), (2, 1), . . . , (n, 1), (2, 2), (3, 2), . . . , (n, 2),

(3, 3), . . . , (n, 3), . . . , (n − 1, n − 1), (n, n − 1), (n, n)

By symmetry the equations obtained for (i, j) and (j, i) would be the same and
so only the first to appear is given.

For instance, suppose we want the Choleski decomposition of the matrix

C =
⎡
⎢⎣ 9 4 2

4 8 3
2 3 7

⎤
⎥⎦ (6.9)

The matrix equation becomes⎡
⎢⎣a11 0 0

a21 a22 0
a31 a32 a33

⎤
⎥⎦ ∗

⎡
⎢⎣a11 a21 a31

0 a22 a32

0 0 a33

⎤
⎥⎦ =

⎡
⎢⎣ 9 4 2

4 8 3
2 3 7

⎤
⎥⎦

yielding the solution

a2
11 = 9 ⇒ a11 = 3

a21a11 = 4 ⇒ a21 = 4

3

a31a11 = 2 ⇒ a31 = 2

3

a2
21 + a2

22 = 8 ⇒ a22 =
√

56

3
≈ 2.4944

a31a21 + a32a22 = 3 ⇒ a32 = 3 − 8/9√
56/3

= 19

3/
√

56
≈ 0.8463

a2
31 + a2

32 + a2
33 = 7 ⇒ a33 = 1

3

√
59 − (19)2/56 ≈ 2.4165 �

6.3 Copulas

A joint probability distribution function that results in both marginal distributions
being uniformly distributed on (0, 1) is called a copula. That is, the joint

6.3 Copulas 103

distribution function C(x, y) is a copula if C(0, 0) = 0 and for 0 ≤ x, y ≤ 1

C(x, 1) = x, C(1, y) = y

Suppose we are interested in finding an appropriate joint probability distribution
function H(x, y) for random variables X and Y , whose marginal distributions are
known to be the continuous distribution functions F and G, respectively. That is,
knowing that

P(X ≤ x) = F(x)

and

P(Y ≤ y) = G(y)

and having some knowledge about the type of dependency between X and Y , we
want to choose an appropriate joint distribution function H(x, y) = P(X ≤ x,

Y ≤ y). Because X has distribution F and Y has distribution G it follows that
F(X) and G(Y) are both uniform on (0, 1). Consequently the joint distribution
function of F(X), G(Y) is a copula. Also, because F and G are both increasing
functions, it follows that X ≤ x, Y ≤ y if and only if F(X) ≤ F(x),
G(Y) ≤ G(y).Consequently, if we choose the copula C(x, y) as the joint
distribution function of F(X), G(Y) then

H(x, y) = P(X ≤ x, Y ≤ y)

= P(F(X) ≤ F(x), G(Y) ≤ G(y))

= C(F(x), G(y))

The copula approach to choosing an appropriate joint probability distribution
function for random variables X and Y is to first decide on their marginal
distributions F and G, and then choose an appropriate copula to model the joint
distribution of F(X), G(Y). An appropriate copula to use would be one that models
the presumed dependencies between F(X) and G(Y). Because F and G are
increasing, the dependencies resulting from the resulting copula chosen should
be similar to the dependency that we think holds between X and Y. For instance, if
we believe that the correlation between X and Y is ρ, then we could try to choose
a copula such that random variables whose distribution is given by that copula
would have correlation equal to ρ. (Because correlation only measures the linear
relationship between random variables, the correlation of X and Y is, however, not
equal to the correlation of F(X) and G(Y).)

Example 6b The Gaussian Copula A very popular copula used
in modeling is the Gaussian copula. Let � be the standard normal distribution
function. If X and Y are standard normal random variables whose joint distribution
is a bivariate normal distribution with correlation ρ, then the joint distribution of

104 6 The Multivariate Normal Distribution and Copulas

�(X) and �(Y) is called the Gaussian copula. That is, the Gaussian copula C is
given by

C(x, y) = P(�(X) ≤ x,�(Y) ≤ y)

= P(X ≤ �−1(x), Y ≤ �−1(y))

=
∫ �−1(x)

−∞

∫ �−1(y)

−∞

1

2π
√

1 − ρ2

× exp

{
− 1

2(1 − ρ2)
(x2 + y2 − 2ρxy)

}
dy dx �

Remark The terminology “Gaussian copula” is used because the normal
distribution is often called the Gaussian distribution in honor of the famous
mathematician J.F. Gauss, who made important use of the normal distribution
in his astronomical studies. �

Suppose X, Y has a joint distribution function H(x, y), and let

F(x) = lim
y→∞ H(x, y)

and
G(y) = lim

x→∞ H(x, y)

be the marginal distributions of X and Y. The joint distribution of F(X), G(Y) is
called the copula generated by X, Y, and is denoted as CX,Y . That is,

CX,Y (x, y) = P(F(X) ≤ x, G(Y) ≤ y)

= P(X ≤ F−1(x), Y ≤ G−1(y))

= H(F−1(x), G−1(y))

For instance, the Gaussian copula is the copula generated by random variables that
have a bivariate normal distribution with means 0, variances 1, and correlation ρ.

We now show that if s(x) and t (x) are increasing functions, then the copula
generated by the random vector s(X), t (Y) is equal to the copula generated
by X, Y.

Proposition If s and t are increasing functions, then

Cs(X),t (Y)(x, y) = CX,Y (x, y)

Proof If F and G are the respective distribution functions of X and Y, then the
distribution function of s(X), call it Fs , is

Fs(x) = P(s(X) ≤ x)

= P(X ≤ s−1(x)) (because s is an increasing function)

= F(s−1(x))

6.3 Copulas 105

Similarly, the distribution function of t (Y), call it Ft , is

Ft(y) = G(t−1(y))

Consequently,
Fs(s(X)) = F(s−1(s(X))) = F(X)

and
Ft(t (Y)) = G(Y)

showing that

Cs(X),t (Y)(x, y) = P(Fs(s(X)) ≤ x, Ft(t (Y)) ≤ y)

= P(F(X) ≤ x, G(Y) ≤ y)

= CX,Y (x, y) �

Suppose again that X, Y has a joint distribution function H(x, y) and that the
continuous marginal distribution functions are F and G. Another way to obtain a
copula aside from using that F(X) and G(Y) are both uniform on (0, 1) is to use
that 1 − F(X) and 1 − G(Y) are also uniform on (0, 1). Hence,

C(x, y) = P(1 − F(X) ≤ x, 1 − G(Y) ≤ y)

= P(F(X) ≥ 1 − x, G(Y) ≥ 1 − y)

= P(X ≥ F−1(1 − x), Y ≥ G−1(1 − y)) (6.10)

is also a copula. It is sometimes called the copula generated by the tail distributions
of X and Y .

Example 6c The Marshall_Olkin Copula A tail distribution generated
copula that indicates a positive correlation between X and Y and which gives a
positive probability that X = Y is the Marshall–Olkin copula. The model that
generated it originated as follows. Imagine that there are three types of shocks.
Let Ti denote the time until a type i shock occurs, and suppose that T1, T2, T3 are
independent exponential random variables with respective means E[Ti] = 1/λi .
Now suppose that there are two items, and that a type 1 shock causes item 1 to fail,
a type 2 shock causes item 2 to fail, and a type 3 shock causes both items to fail.
Let X be the time at which item 1 fails and let Y be the time at which item 2 fails.
Because item 1 will fail either when a type 1 or a type 3 shock occurs, it follows
from the fact that the minimum of independent exponential random variables is
also exponential, with a rate equal to the sum of the rates, that X is exponential
with rate λ1 + λ3. Similarly, Y is exponential with rate λ2 + λ3. That is, X and Y
have respective distribution functions

F(x) = 1 − exp{−(λ1 + λ3)x}, x ≥ 0 (6.11)

G(y) = 1 − exp{−(λ2 + λ3)y}, y ≥ 0 (6.12)

106 6 The Multivariate Normal Distribution and Copulas

Now, for x ≥ 0, y ≥ 0

P(X > x, Y > y) = P(T1 > x, T2 > y, T3 > max(x, y))

= P(T1 > x)P(T2 > y)P(T3 > max(x, y))

= exp{−λ1x − λ2 y − λ3 max(x, y)}
= exp{−λ1x − λ2 y − λ3(x + y − min(x, y))}
= exp{−(λ1 + λ3)x} exp{−(λ2 + λ3)y} exp{λ3 min(x, y)}
= exp{−(λ1 + λ3)x} exp{−(λ2 + λ3)y}

× min(exp{λ3x}, exp{λ3 y}) (6.13)

Now, if p(x) = 1 − e−ax , then p−1(x) is such that

x = p(p−1(x)) = 1 − e−ap−1(x)

which yields that

p−1(x) = −1

a
ln(1 − x) (6.14)

Consequently, setting a = λ1 +λ3 in Equation (6.14) we see from Equation (6.11)
that

F−1(1 − x) = − 1

λ1 + λ3
ln(x), 0 ≤ x ≤ 1

Similarly, setting a = λ2 + λ3 in Equation (6.14) yields from Equation (6.12) that

G−1(1 − y) = − 1

λ2 + λ3
ln(y), 0 ≤ y ≤ 1

Consequently,

exp{−(λ1 + λ3)F−1(1 − x)} = x

exp{−(λ2 + λ3)G
−1(1 − y)} = y

exp{λ3 F−1(1 − x)} = x
− λ3

λ1+λ3

exp{λ3G−1(1 − y)} = y
− λ3

λ2+λ3

Hence, from Equations (6.10) and (6.13) we obtain that the copula generated by
the tail distribution of X and Y, referred to as the Marshall–Olkin copula, is

C(x, y) = P(X ≥ F−1(1 − x), Y ≥ G−1(1 − y))

= xy min

(
x

− λ3
λ1+λ3 , y

− λ3
λ2+λ3

)
= min(xα y, xyβ)

where α = λ1
λ1+λ3

and β = λ2
λ2+λ3

.

6.4 Generating Variables from Copula Models 107

Multidimensional Copulas

We can also use copulas to model n-dimensional probability distributions. The
n-dimensional distribution function C(x1, . . . , xn) is said to be a copula if all n
marginal distributions are uniform on (0, 1). We can now choose a joint distribution
of a random vector X1, . . . , Xn by first choosing the marginal distribution
functions Fi , i = 1, . . . , n, and then choosing a copula for the joint distribution of
F1(X1), . . . , Fn(Xn). Again a popular choice is the Gaussian copula which takes C
to be the joint distribution function of �(W1), . . . , �(Wn) when W1, . . . , Wn has
a multivariate normal distribution with mean vector 0, and a specified covariance
matrix whose diagonal (variance) values are all 1. (The diagonal values of the
covariance matrix are taken equal to 1 so that the distribution of �(Wi) is uniform
on (0, 1).) In addition, so that the relationship between Xi and X j is similar to that
between Wi and W j , it is usual to let Cov(Wi , W j) = Cov(Xi , X j), i �= j .

6.4 Generating Variables from Copula Models

Suppose we want to generate a random vector X = (X1, . . . , Xn) with marginal
distributions F1, . . . , Fn and copula C. Provided we can generate a random
vector whose distribution is C, and that we can invert the distribution functions
Fi , i = 1, . . . , n, it is easy to generate X. Because the joint distribution of
F1(X1), . . . , Fn(Xn) is C, we can generate X1, . . . , Xn by first generating a
random vector having distribution C and then inverting the generated values to
obtain the desired vector X. That is, if the generated values from the copula
distribution function are y1, . . . , yn , then the generated value of X1, . . . , Xn are
F−1

1 (y1), . . . , F−1
n (yn).

Example 6d The following can be used to generate X1, . . . , Xn having
marginal distributions F1, . . . , Fn and covariances Cov(Xi , X j), i �= j , by using
a Gaussian copula:

1. Use the Choleski decomposition method to generate W1, . . . , Wn from a
multivariate normal distribution with means all equal to 0, variances all equal
to 1, and with Cov(Wi , W j) = Cov(Xi , X j), i �= j .

2. Compute the values �(Wi), i = 1, . . . , n, and note that the joint distribution
of �(W1), . . . , �(Wn) is the Gaussian copula.

3. Let Fi (Xi) = �(Wi), i = 1, . . . , n.
4. Invert to obtain Xi = F−1

i (�(Wi)), i = 1, . . . , n. �

Example 6e Suppose that we want to generate V, W having marginal
distribution functions H and R using a Marshall–Olkin tail copula. Rather than
generating directly from the copula, it is easier to first generate the Marshall–
Olkin vector X, Y. With F and G denoting the marginal distribution functions of
X and Y , we then take 1 − F(X) = e−(λ1+λ3)X , 1 − G(Y) = e−(λ2+λ3)Y as the

108 6 The Multivariate Normal Distribution and Copulas

generated value of the vector having the distribution of the copula. We then set
these values equal to H(V) and to R(W) and solve for V and W. That is, we use
the following approach:

1. Generate T1, T2, T3, independent exponential random variables with rates
λ1, λ2, λ3.

2. Let X = min(T1, T3), Y = min(T2, T3).
3. Set H(V) = e−(λ1+λ3)X , R(W) = e−(λ2+λ3)Y .
4. Solve the preceding to obtain V, W . �

Exercises

1. Suppose Y1, . . . , Ym are independent normal random variables with means
E[Yi] = μi , and variances Var(Yi) = σ 2

i , i = 1, . . . , m. If

Xi = ai1Y1 + ai2Y2 + · · · + aimYm, i = 1, . . . , n

argue that X1, . . . , Xn is a multivariate normal random vector.

2. Suppose that X1, . . . , Xn has a multivariate normal distribution. Show that
X1, . . . , Xn are independent if and only if

Cov(Xi , X j) = 0 when i �= j

3. If X is a multivariate normal n-vector with mean vector µ and covariance
matrix C, show that AX′ is multivariate normal with mean vector Aµ′ and
covariance matrix ACA′, when A is an m × n matrix.

4. Find the Choleski decomposition of the matrix

⎡
⎢⎢⎢⎣

4 2 2 4
2 5 7 0
2 7 19 11
4 0 11 25

⎤
⎥⎥⎥⎦

5. Let X1, X2 have a bivariate normal distribution, with means E[Xi] = μi ,
variances Var(Xi) = σ 2

i , i = 1, 2, and correlation ρ. Show that the conditional
distribution of X2 given that X1 = x is normal with mean μ2 + ρ

σ2
σ1

(x1 − μ1)

and variance σ 2
2 (1 − ρ2).

6. Give an algorithm for generating random variables X1, X2, X3 having a
multivariate distribution with means E[Xi] = i, i = 1, 2, 3, and covariance
matrix

Exercises 109⎡
⎢⎣ 3 −2 1

−2 5 3
1 3 4

⎤
⎥⎦

7. Find the copula CX,X .

8. Find the copula CX,−X .

9. Find the copula CX,Y when X and Y are independent.

10. If s is an increasing function, and t is a decreasing function, find Cs(X),t (Y) in
terms of CX,Y .

7The Discrete Event
Simulation Approach

Introduction

Simulating a probabilistic model involves generating the stochastic mechanisms of
the model and then observing the resultant flow of the model over time. Depending
on the reasons for the simulation, there will be certain quantities of interest that we
will want to determine. However, because the model’s evolution over time often
involves a complex logical structure of its elements, it is not always apparent how
to keep track of this evolution so as to determine these quantities of interest. A
general framework, built around the idea of “discrete events,” has been developed
to help one follow a model over time and determine the relevant quantities of
interest. The approach to simulation based on this framework is often referred to
as the discrete event simulation approach.

7.1 Simulation via Discrete Events

The key elements in a discrete event simulation are variables and events. To do
the simulation we continually keep track of certain variables. In general, there are
three types of variables that are often utilized—the time variable, and the system
state variable.

Variables
1. Time variable t This refers to the amount of (simulated) time

that has elapsed

2. Counter variables These variables keep a count of the number of times
that certain events have occurred by time t

3. System state This describes the “state of the system”
(SS) variable at the time t

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00007-3
© 2013 Elsevier Inc. All rights reserved. 111

http://dx.doi.org/10.1016/B978-0-12-415825-2.00007-3

112 7 The Discrete Event Simulation Approach

Whenever an “event” occurs the values of the above variables are changed,
or updated, and we collect, as output, any relevant data of interest. In order to
determine when the next event will occur, an “event list,” which lists the nearest
future events and when they are scheduled to occur, is maintained. Whenever
an event “occurs” we then reset the time and all state and counter variables and
collect the relevant data. In this way we are able to “follow” the system as it evolves
over time.

As the preceding is only meant to give a very rough idea of the elements of
a discrete event simulation, it is useful to look at some examples. In Section 7.2
we consider the simulation of a single-server waiting line, or queueing, system. In
Sections 7.3 and 7.4 we consider multiple-server queueing systems. The model of
Section 7.3 supposes that the servers are arranged in a series fashion, and the one
of 7.4 that they are arranged in a parallel fashion. In Section 7.5 we consider an
inventory stocking model, in 7.6 an insurance risk model, and in 7.7 a multimachine
repair problem. In Section 7.8 we consider a model concerning stock options.

In all the queueing models, we suppose that the customers arrive in accordance
with a nonhomogeneous Poisson process with a bounded intensity function
λ(t), t > 0. In simulating these models we will make use of the following
subroutine to generate the value of a random variable Ts , defined to equal the
time of the first arrival after time s.

Let λ be such that λ(t) � λ for all t . Assuming that λ(t), t > 0, and λ are
specified, the following subroutine generates the value of Ts .

A Subroutine for Generating Ts

step 1: Let t = s.
step 2: Generate U .
step 3: Let t = t − 1

λ
log U .

step 4: Generate U .
step 5: If U � λ(t)/λ, set Ts = t and stop.
step 6: Go to Step 2.

7.2 A Single-Server Queueing System

Consider a service station in which customers arrive in accordance with a
nonhomogeneous Poisson process with intensity function λ(t), t � 0. There is
a single server, and upon arrival a customer either enters service if this server is
free at that moment or else joins the waiting queue if the server is busy. When the
server completes serving a customer, it then either begins serving the customer that
had been waiting the longest (the so-called “first come first served” discipline) if
there are any waiting customers, or, if there are no waiting customers, it remains
free until the next customer’s arrival. The amount of time it takes to service a

7.2 A Single-Server Queueing System 113

customer is a random variable (independent of all other service times and of the
arrival process), having probability distribution G. In addition, there is a fixed
time T after which no additional arrivals are allowed to enter the system,
although the server completes servicing all those that are already in the system at
time T .

Suppose that we are interested in simulating the above system to determine
such quantities as (a) the average time a customer spends in the system and (b)
the average time past T that the last customer departs—that is, the average time at
which the server can go home.

To do a simulation of the preceding system we use the following variables:

Time Variable t

Counter Variables NA: the number of arrivals (by time t)

ND: the number of departures (by time t)

System State Variable n: the number of customers in the system

(at time t)

Since the natural time to change the above quantities is when there is either an
arrival or a departure, we take these as the “events.” That is, there are two types of
event: arrivals and departures. The event list contains the time of the next arrival
and the time of the departure of the customer presently in service. That is, the event
list is

EL = tA, tD

where tA is the time of the next arrival (after t) and tD is the service completion
time of the customer presently being served. If there is no customer presently being
served, then tD is set equal to ∞.

The output variables that will be collected are A(i), the arrival time of customer
i; D(i), the departure time of customer i ; and Tp, the time past T that the last
customer departs.

To begin the simulation, we initialize the variables and the event times as follows:

Initialize

Set t = NA = ND = 0.
Set SS = 0.
Generate T0, and set tA = T0, tD = ∞.

To update the system, we move along the time axis until we encounter the next
event. To see how this is accomplished, we must consider different cases, depending
on which member of the event list is smaller. In the following, Y refers to a service
time random variable having distribution G.

t = timevariable, SS = n, EL = tA, tD

114 7 The Discrete Event Simulation Approach

Case 1: tA � tD, tA � T

Reset: t = tA (we move along to time tA).
Reset: NA = NA + 1 (since there is an additional arrival at time tA).
Reset: n = n + 1 (because there is now one more customer).
Generate Tt , and reset tA = Tt (this is the time of the next arrival).
If n = 1, generate Y and reset tD = t + Y (because the system had

been empty and so we need to generate the service time of the new
customer).

Collect output data A(NA) = t (because customer NA arrived
at time t).

Case 1: tD < tA, tD � T

Reset: t = tD .
Reset: n = n − 1.
Reset: ND = ND + 1 (since a departure occurred at time t).
If n = 0, reset tD = ∞; otherwise, generate Y and reset tD = t + Y .
Collect the output data D(ND) = t (since customer ND just departed).

Case 3: min(tA, tD) > T, n > 0

Reset: t = tD

Reset: n = n − 1
Reset: ND = ND + 1
If n > 0, generate Y and reset tD = t + Y .
Collect the output data D(ND) = t .

Case 4: min(tA, tD) > T, n = 0

Collect output data Tp = max(t − T, 0).

The preceding is illustrated in the flow diagram presented in Figure 7.1. Each
time we arrive at the “stop” box we would have collected the data NA, the total
number of arrivals, which will equal ND , the total number of departures. For each
i, i = 1, . . . , NA, we have A(i) and D(i), the respective arrival and departure times
of customer i [and thus D(i) − A(i) represents the amount of time that customer
i spent in the system]. Finally, we will have Tp, the time past T at which the last
customer departed. Each time we collect the above data we say that a simulation
run has been completed. After each run we then reinitialize and generate another
run until it has been decided that enough data have been collected. (In Chapter 8
we consider the question of when to end the simulation.) The average of all the
values of Tp that have been generated will be our estimate of the mean time past
T that the last customer departs; similarly, the average of all the observed values
of D − A (i.e., the average time, over all customers observed in all our simulation

7.3 A Queueing System with Two Servers in Series 115

Figure 7.1. Simulating the Single Server Queue.

runs, that a customer spends in the system) will be our estimate of the average time
that a customer spends in the system.

Remark If we want to save output data giving the number of customers in the
system at each point of time, all that is necessary is to output the system state and
time variable pair (n, t) whenever an event occurs. For instance, if the data (1, 4)
and (0, 6) were output then, with n(t) being the number in the system at time t ,
we would know that

n(t) = 0, if 0 � t < 4

n(t) = 1, if 4 � t < 6

n(t) = 0, if t = 6 �

7.3 A Queueing System with Two Servers in Series

Consider a two-server system in which customers arrive in accordance with a
nonhomogeneous Poisson process, and suppose that each arrival must first be
served by server 1 and upon completion of service at 1 the customer goes over to
server 2. Such a system is called a tandem or sequential queueing system. Upon

116 7 The Discrete Event Simulation Approach

De p a
r

t
u
r
e
s

Arrivals

G1 G2

Figure 7.2. A Tandem Queue.

arrival the customer will either enter service with server 1 if that server is free,
or join the queue of server 1 otherwise. Similarly, when the customer completes
service at server 1 it then either enters service with server 2 if that server is free,
or else it joins its queue. After being served at server 2 the customer departs
the system. The service times at server i have distribution Gi , i = 1, 2. (See
Figure 7.2.)

Suppose that we are interested in using simulation to study the distribution of
the amounts of time that a customer spends both at server 1 and at server 2. To do
so, we will use the following variables.

Time Variable t
System State (SS) Variable
(n1, n2): if there are n1 customers at server 1 (including both those in queue and

in service) and n2 at server 2
Counter Variables

NA: the number of arrivals by time t
ND: the number of departures by time t

Output Variables
A1(n): the arrival time of customer n, n � 1
A2(n): the arrival time of customer n at server 2, n � 1
D(n): the departure time of customer n, n � 1

Event List tA, t1, t2, where tA is the time of the next arrival, and ti is the
service completion time of the customer presently being served by
server i, i = 1, 2. If there is no customer presently with server i ,
then ti = ∞, i = 1, 2. The event list always consists of the three variables
tA, t1, t2.

To begin the simulation, we initialize the variables and the event list as follows:

Initialize

Set t = NA = ND = 0.
Set SS = (0, 0).
Generate T0, and set tA = T0, t1 = t2 = ∞.

7.4 A Queueing System with Two Parallel Servers 117

To update the system, we move along in time until we encounter the next event.
We must consider different cases, depending on which member of the event list
is smallest. In the following, Yi refers to a random variable having distribution
Gi , i = 1, 2.

SS = (n1, n2) EL = tA, t1, t2

Case 1: tA = min(tA, t1, t2)

Reset: t = tA.
Reset: NA = NA + 1.
Reset: n1 = n1 + 1.
Generate Tt , and reset tA = Tt .
If n1 = 1, generate Y1 and reset t1 = t + Y1.
Collect output data A1(NA) = t .

Case 2: t1 < tA, t1 � t2

Reset: t = t1.
Reset: n1 = n1 − 1, n2 = n2 + 1.
If n1 = 0, reset t1 = ∞; otherwise, generate Y1 and reset t1 = t + Y1.
If n2 = 1, generate Y2 and reset t2 = t + Y2.
Collect the output data A2(NA − n1) = t .

Case 3: t2 < tA, t2 < t1

Reset: t = t2.
Reset: ND = ND + 1.
Reset: n2 = n2 − 1.
If n2 = 0, reset t2 = ∞.
If n2 > 0, generate Y2, and reset t2 = t + Y2.
Collect the output data D(ND) = t .

Using the preceding updating scheme it is now an easy matter to simulate the
system and collect the relevant data.

7.4 A Queueing System with Two Parallel Servers

Consider a model in which customers arrive at a system having two servers. Upon
arrival the customer will join the queue if both servers are busy, enter service with
server 1 if that server is free, or enter service with server 2 otherwise. When the
customer completes service with a server (no matter which one), that customer
then departs the system and the customer that has been in queue the longest (if
there are any customers in queue) enters service. The service distribution at server
i is Gi , i = 1, 2. (See Figure 7.3.)

118 7 The Discrete Event Simulation Approach

Arrivals

G1

G2

Figure 7.3. A Queue with Two Parallel Servers.

Suppose that we want to simulate the preceding model, keeping track of
the amounts of time spent in the system by each customer, and the number
of services performed by each server. Because there are multiple servers,
it follows that customers will not necessarily depart in the order in which
they arrive. Hence, to know which customer is departing the system upon a
service completion we will have to keep track of which customers are in the
system. So let us number the customers as they arrive, with the first arrival
being customer number 1, the next being number 2, and so on. Because
customers enter service in order of their arrival, it follows that knowing which
customers are being served and how many are waiting in queue enables us
to identify the waiting customers. Suppose that customers i and j are being
served, where i < j , and that there are n − 2 > 0 others waiting in queue.
Because all customers with numbers less than j would have entered service
before j , whereas no customer whose number is higher than j could yet have
completed service (because to do so they would have had to enter service before
either i or j), it follows that customers j + 1, . . . , j + n − 2 are waiting in
queue.

To analyze the system we will use the following variables:

Time Variable t
System State Variable (SS)
(n, i1, i2) if there are n customers in the system, i1 is with server 1 and i2 is with

server 2. Note that SS = (0) when the system is empty, and SS = (1, j, 0) or
(1, 0, j) when the only customer is j and he is being served by server 1 or server
2, respectively.

Counter Variables
NA: the number of arrivals by time t
C j : the number of customers served by j, j = 1, 2, by time t

Output Variables
A(n): the arrival time of customer n, n � 1
D(n): the departure time of customer n, n � 1

7.4 A Queueing System with Two Parallel Servers 119

Event list tA, t1, t2

where tA is the time of the next arrival, and ti is the service completion time of
the customer presently being served by server i, i = 1, 2. If there is no

customer presently with server i , then we set ti = ∞, i = 1, 2. In the following,
the event list will always consist of the three variables tA, t1, t2.

To begin the simulation, we initialize the variables and event list as follows:

Initialize

Set t = NA = C1 = C2 = 0.
Set SS = (0).
Generate T0, and set tA = T0, t1 = t2 = ∞.

To update the system, we move along in time until we encounter the next event.
In the following cases, Yi always refers to a random variable having distribution
Gi , i = 1, 2.

Case 1: SS = (n, i1, i2) and tA = min(tA, t1, t2)

Reset: t = tA.
Reset: NA = NA + 1.
Generate Tt and reset tA = Tt .
Collect the output data A(NA) = t .

If SS = (0):

Reset: SS = (1, NA, 0).
Generate Y1 and reset t1 = t + Y1.

If SS = (1, j, 0):

Reset: SS = (2, j, NA).
Generate Y2 and reset t2 = t + Y2.

If SS = (1, 0, j):

Reset SS = (2, NA, j).
Generate Y1 and reset t1 = t + Y1.

If n > 1:

Reset: SS = (n + 1, i1, i2).

Case 2: SS = (n, i1, i2) and t1 < tA, t1 � t2

Reset: t = t1.
Reset: C1 = C1 + 1.

120 7 The Discrete Event Simulation Approach

Collect the output data D(i1) = t .

If n = 1:

Reset: SS = (0).
Reset: t1 = ∞.

If n = 2:

Reset: SS = (1, 0, i2).
Reset: t1 = ∞.

If n > 2: Let m = max(i1, i2) and

Reset SS = (n − 1, m + 1, i2)

Generate Y1 and reset t1 = t + Y1

Case 3: SS = (n, i1, i2) and t2 < tA, t2 < t1

The updatings in Case 3 are left as an exercise.
If we simulate the system according to the preceding, stopping the simulation at

some predetermined termination point, then by using the output variables as well
as the final values of the counting variables C1 and C2, we obtain data on the arrival
and departure times of the various customers as well as on the number of services
performed by each server.

7.5 An Inventory Model

Consider a shop that stocks a particular type of product that it sells for a price of r
per unit. Customers demanding this product appear in accordance with a Poisson
process with rate λ, and the amount demanded by each one is a random variable
having distribution G. In order to meet demands, the shopkeeper must keep an
amount of the product on hand, and whenever the on-hand inventory becomes low,
additional units are ordered from the distributor. The shopkeeper uses a so-called
(s, S) ordering policy; namely, whenever the on-hand inventory is less than s and
there is no presently outstanding order, then an amount is ordered to bring it up
to S, where s < S. That is, if the present inventory level is x and no order is
outstanding, then if x < s the amount S − x is ordered. The cost of ordering y
units of the product is a specified function c(y), and it takes L units of time until
the order is delivered, with the payment being made upon delivery. In addition,
the shop pays an inventory holding cost of h per unit item per unit time. Suppose
further that whenever a customer demands more of the product than is presently
available, then the amount on hand is sold and the remainder of the order is lost to
the shop.

7.5 An Inventory Model 121

Let us see how we can use simulation to estimate the shop’s expected profit up
to some fixed time T . To do so, we start by defining the variables and events as
follows.

Time Variable t
System State Variable (x, y)

where x is the amount of inventory on hand, and y is the amount on order.
Counter Variables
C , the total amount of ordering costs by t
H , the total amount of inventory holding costs by t
R, the total amount of revenue earned by time t

Events will consist of either a customer or an order arriving. The event times are
t0, the arrival time of the next customer
t1, the time at which the order being filled will be delivered. If there is, no

outstanding order then we take the value of t1 to be ∞.

The updating is accomplished by considering which of the event times is smaller.
If we are presently at time t and we have the values of the preceding variables,
then we move along in time as follows.

Case 1: t0 < t1

Reset: H = H + (t0 − t)xh since between times t and t0 we incur a
holding cost of (t0 − t)h for each of the x units in inventory.

Reset: t = t0.
Generate D, a random variable having distribution G.D is the demand

of the customer that arrived at time t0.
Let w = min(D, x) be the amount of the order that can be filled. The

inventory after filling this order is x − w.
Reset: R = R + wr .
Reset: x = x − w.
If x < s and y = 0 then reset y = S − x, t1 = t + L .
Generate U and reset t0 = t − 1

λ
log(U).

Case 2: t1 � t0

Reset: H = H + (t1 − t)xh.
Reset: t = t1.
Reset: C = C + c(y).
Reset: x = x + y.
Reset: y = 0, t1 = ∞.

By using the preceding updating schedule it is easy to write a simulation program
to analyze the model. We could then run the simulation until the first event occurs
after some large preassigned time T , and we could then use (R − C − H)/T as an
estimate of the shop’s average profit per unit time. Doing this for varying values

122 7 The Discrete Event Simulation Approach

of s and S would then enable us to determine a good inventory ordering policy for
the shop.

7.6 An Insurance Risk Model

Suppose that the different policyholders of a casualty insurance company generate
claims according to independent Poisson processes with a common rate λ, and
that each claim amount has distribution F . Suppose also that new customers sign
up according to a Poisson process with rate ν, and that each existing policyholder
remains with the company for an exponentially distributed time with rate μ. Finally,
suppose that each policyholder pays the insurance firm at a fixed rate c per unit time.
Starting with n0 customers and initial capital a0 � 0, we are interested in using
simulation to estimate the probability that the firm’s capital is always nonnegative
at all times up to time T .

To simulate the preceding, we define the variables and events as follows.

Time Variable t
System State Variable (n, a), where n is the number of policyholders and a is

the firm’s current capital.
Events There are three types of events: a new policyholder, a lost policyholder,

and a claim. The event list consists of a single value, equal to the time at which
the next event occurs.

EL tE

We are able to have the event list consist solely of the time of the next event
because of results about exponential random variables that were presented in
Section 2.9. Specifically, if (n, a) is the system state at time t then, because the
minimum of independent exponential random variables is also exponential, the
time at which the next event occurs will equal t + X , where X is an exponential
random variable with rate ν +nμ+nλ. Moreover, no matter when this next event
occurs, it will result from

A new policyholder, with probability
ν

ν + nμ + nλ

A lost policyholder, with probability
nμ

ν + nμ + nλ

A claim, with probability
nλ

ν + nμ + nλ

After determining when the next event occurs, we generate a random number
to determine which of the three possibilities caused the event, and then use this
information to determine the new value of the system state variable.
In the following, for given state variable (n, a), X will be an exponential
random variable with rate ν + nμ + nλ; J will be a random variable equal

to 1 with probability
ν

ν + nμ + nλ
, to 2 with probability

nμ

ν + nμ + nλ
, or to

7.6 An Insurance Risk Model 123

3 with probability
nλ

ν + nμ + nλ
; Y will be a random variable having the claim

distribution F .
Output Variable I , where

I =
{

1, if the firm’s capital is nonnegative throughout [0, t]
0, otherwise

To simulate the system, we initialize the variables as follows.

Initialize

First initialize

t = 0, a = a0, n = n0

then generate X and initialize

tE = X

To update the system we move along to the next event, first checking whether it
takes us past time T .

Update Step

Case 1: tE > T :

Set I = 1 and end this run.

Case 2: tE � T :

Reset

a = a + nc(tE − t)
t = tE

Generate J :

J = 1: reset n = n + 1
J = 2: reset n = n − 1
J = 3: Generate Y . If Y > a, set I = 0 and end this run; otherwise

reset a = a − Y

Generate X : reset tE = t + X

The update step is then continually repeated until a run is completed.

124 7 The Discrete Event Simulation Approach

Working
machines

Spares

Upon repair

Upon repair completion

Repair
facility

Upon failure

When a
failure
occurs

Figure 7.4. Repair Model.

7.7 A Repair Problem

A system needs n working machines to be operational. To guard against machine
breakdown, additional machines are kept available as spares. Whenever a machine
breaks down it is immediately replaced by a spare and is itself sent to the repair
facility, which consists of a single repairperson who repairs failed machines one
at a time. Once a failed machine has been repaired it becomes available as a spare
to be used when the need arises (see Figure 7.4). All repair times are independent
random variables having the common distribution function G. Each time a machine
is put into use the amount of time it functions before breaking down is a random
variable, independent of the past, having distribution function F .

The system is said to “crash” when a machine fails and no spares are available.
Assuming that there are initially n + s functional machines of which n are put in
use and s are kept as spares, we are interested in simulating this system so as to
approximate E[T], where T is the time at which the system crashes.

To simulate the preceding we utilize the following variables.

Time Variable t

System State Variable r : the number of machines that are down at time t

Since the system state variable will change either when a working machine breaks
down or when a repair is completed, we say that an “event” occurs whenever either
of these occurs. In order to know when the next event will occur, we need to keep
track of the times at which the machines presently in use will fail and the time at

7.7 A Repair Problem 125

which the machine presently being repaired (if there is a machine in repair) will
complete its repair. Because we will always need to determine the smallest of the
n failure times, it is convenient to store these n times in an ordered list. Thus it is
convenient to let the event list be as follows:

Event List : t1 � t2 � t3 � · · · � tn, t∗

where t1, . . . , tn are the times (in order) at which the n machines presently in use
will fail, and t∗ is the time at which the machine presently in repair will become
operational, or if there is no machine presently being repaired then t∗ = ∞.

To begin the simulation, we initialize these quantities as follows.

Initialize

Set t = r = 0, t∗ = ∞.
Generate X1, . . . , Xn , independent random variables each having distribution F .

Order these values and let ti be the i th smallest one, i = 1, . . . , n.
Set Event list: t1, . . . , tn, t∗.

Updating of the system proceeds according to the following two cases.

Case 1: t1 < t∗

Reset: t = t1.
Reset: r = r + 1 (because another machine has failed).
If r = s + 1, stop this run and collect the data T = t (since, as there

are now s + 1 machines down, no spares are available).
If r < s +1, generate a random variable X having distribution F . This

random variable will represent the working time of the spare that
will now be put into use. Now reorder the values t2, t3, . . . , tn, t + X
and let ti be the i th smallest of these values, i = 1, . . . , n.

If r = 1, generate a random variable Y having distribution function
G and reset t∗ = t + Y . (This is necessary because in this case the
machine that has just failed is the only failed machine and thus
repair will immediately begin on it; Y will be its repair time and so
its repair will be completed at time t + Y .)

Case 2: t∗ � t1

Reset: t = t∗.
Reset: r = r − 1.
If r > 0, generate a random variable Y having distribution function

G, and representing the repair time of the machine just entering
service, and reset t∗ = t + Y .

If r = 0, set t∗ = ∞.

The above rules for updating are illustrated in Figure 7.5.

126 7 The Discrete Event Simulation Approach

Initialize: t = r = 0, t*
generate X1, ..., Xn ~ F
ti = ith smallest of X1, ..., Xn
Even List: t1, ..., tn, t*

Generate X~F
reorder t2, ..., tn, t + X

and call reordering
t1, ..., tn

Reset t = t*, r = r − 1
If r = 0, set t*

If r > 0, generate Y ~ G and reset
t* = t + Y

t, r
Event list:

Generate Y ~ G
t* = t + Y
r = r + 1

t1, ..., tn, t* If t1 < t*

If t
* t 1

Yes

Reset
t = t1

r = r + 1

Yes

No

End run
collect data T = t

Is r = 0?
No

Is r = s?

Figure 7.5. Simulating the Repair Model.

Each time we stop (which occurs when r = s+1) we say that a run is completed.
The output for the run is the value of the crash time T . We then reinitialize and
simulate another run. In all, we do a total of, say, k runs with the successive output
variables being T1, . . . , Tk . Since these k random variables are independent and
each represents a crash time, their average,

∑k
i=1 Ti/k, is the estimate of E[T], the

mean crash time. The question of determining when to stop the simulation—that
is, determining the value of k—is considered in Chapter 8, which presents the
methods used to statistically analyze the output from simulation runs.

7.8 Exercising a Stock Option

Let Sn, n � 0 denote the price of a specified stock at the end of day n. A common
model is to suppose that

Sn = S0 exp{X1 + · · · + Xn}, n � 0

where X1, X2, . . . is a sequence of independent normal random variables, each with
mean μ and variance σ 2. This model, which supposes that each day’s percentage
increase in price over the previous day has a common distribution, is called the
lognormal random walk model. Let α = μ + σ 2/2. Suppose now that you own
an option to purchase one unit of this stock at a fixed price K , called the striking

7.8 Exercising a Stock Option 127

price, at the end of any of the next N days. If you exercise this option when the
stock’s price is S then, because you only pay the amount K , we will call this a
gain of S − K (since you could theoretically immediately turn around and sell the
stock at the price S). The expected gain in owning the option (which clearly would
never be exercised if the stock’s price does not exceed K during the time period
of interest) depends on the option exercising policy you employ. Now, it can be
shown that if α � 0 then the optimal policy is to wait until the last possible moment
and then exercise the option if the price exceeds K and not exercise otherwise.
Since X1 + · · · + X N is a normal random variable with mean Nμ and variance
Nσ 2, it is not difficult to explicitly compute the return from this policy. However,
it is not at all easy to characterize an optimal, or even a near optimal, policy when
α < 0, and for any reasonably good policy it is not possible to explicitly evaluate
the expected gain. We will now give a policy that can be employed when α < 0.
This policy, although far from being an optimal policy, appears to be reasonably
good. It calls for exercising the option when there are m days to go whenever,
for each i = 1, . . . , m, that action leads to a higher expected payoff than letting
exactly i days go by and then either exercising (if the price at that point is greater
than K) or giving up on ever exercising.

Let Pm = SN−m denote the price of the stock when there are m days to go before
the option expires. The policy we suggest is as follows:

Policy: If there are m days to go, then exercise the option at this time if

Pm > K

and, if for each i = 1, . . . , m

Pm > K + Pmeiα�(σ
√

i + bi) − K�(bi)

where

bi = iμ − log(K/Pm)

σ
√

i

and where �(x) is the standard normal distribution function and can be accurately
approximated by the following formula: For x � 0

�(x) ≈ 1 − 1√
2π

(a1 y + a2 y2 + a3 y3)e−x2/2

For x < 0,�(x) = 1 − �(−x); where

y = 1

1 + 0.33267x
a1 = 0.4361836

a2 = −0.1201676

a3 = 0.9372980

128 7 The Discrete Event Simulation Approach

Let SP denote the price of the stock when the option is exercised, if it is exercised,
and let SP be K if the option is never exercised. To determine the expected worth of
the preceding policy—that is, to determine E[S P] − K —it is necessary to resort
to simulation. For given parameters μ, σ, N , K , S0 it is easy enough to simulate
the price of the stock on separate days by generating X , a normal random variable
with mean μ and standard deviation σ , and then using the relation

Pm−1 = PmeX

Thus, if Pm is the price with m days to go and the policy does not call for exercising
the option at this time, then we would generate X and determine the new price Pm−1

and have the computer check whether the policy calls for exercising at this point.
If so, then for that simulation run S P = Pm−1; if not, then we would determine the
price at the end of the next day, and so on. The average value, over a large number
of simulation runs, of S P − K would then be our estimate of the expected value
of owning the option when you are using the preceding policy.

7.9 Verification of the Simulation Model

The end product of the discrete event approach to simulation is a computer program
that one hopes is free of error. To verify that there are indeed no bugs in the program,
one should, of course, use all the “standard” techniques of debugging computer
programs. However, there are several techniques that are particularly applicable in
debugging simulation models, and we now discuss some of them.

As with all large programs one should attempt to debug in “modules” or
subroutines. That is, one should attempt to break down the program into small
and manageable entities that are logical wholes and then attempt to debug
these entities. For example, in simulation models the generation of random
variables constitutes one such module, and these modules should be checked
separately.

The simulation should always be written broadly with a large number of
input variables. Oftentimes by choosing suitable values we can reduce the
simulation model to one that can be evaluated analytically or that has been
previously extensively studied, so as to compare our simulated results with known
answers.

In the testing stage, the program should be written to give as output all the
random quantities it generates. By suitably choosing simple special cases, we
can then compare the simulated output with the answer worked out by hand. For
example, suppose we are simulating the first T time units of a k server queueing
system. After inputting the values T = 8 (meant to be a small number) and k = 2,
suppose the simulation program generates the following data:

Exercises 129

Customer number: 1 2 3 4 5 6

Arrival time: 1.5 3.6 3.9 5.2 6.4 7.7

Service time: 3.4 2.2 5.1 2.4 3.3 6.2

and suppose that the program gives as output that the average time spent in the
system by these six customers is 5.12.

However, by going through the calculations by hand, we see that the first
customer spent 3.4 time units in the system; the second spent 2.2 (recall there are
two servers); the third arrived at time 3.9, entered service at time 4.9 (when the first
customer left), and spent 5.1 time units in service—thus, customer 3 spent a time
6.1 in the system; customer 4 arrived at time 5.2, entered service at time 5.8 (when
number 2 departed), and departed after an additional time 2.4—thus, customer 4
spent a time 3.0 in the system; and so on. These calculations are presented below:

Arrival time: 1.5 3.6 3.9 5.2 6.4 7.7

Time when service began: 1.5 3.6 4.9 5.8 8.2 10.0

Departure time: 4.9 5.8 10.0 8.2 11.5 16.2

Time in system: 3.4 2.2 6.1 3.0 5.1 8.5

Hence, the output for the average time spent in the system by all arrivals up to time
T = 8 should have been

3.4 + 2.2 + 6.1 + 3.0 + 5.1 + 8.5

6
= 4.71666 . . .

thus showing that there is an error in the computer program which gave the output
value 5.12.

A useful technique when searching for errors in the computer program is to
utilize a trace. In a trace, the state variable, the event list, and the counter variables
are all printed out after each event occurs. This allows one to follow the simulated
system over time so as to determine when it is not performing as intended. (If
no errors are apparent when following such a trace, one should then check the
calculations relating to the output variables.)

Exercises

1. Write a program to generate the desired output for the model of Section 7.2.
Use it to estimate the average time that a customer spends in the system and
the average amount of overtime put in by the server, in the case where the
arrival process is a Poisson process with rate 10, the service time density is

g(x) = 20e−40x(40x)2, x > 0

and T = 9. First try 100 runs and then 1000.

130 7 The Discrete Event Simulation Approach

2. Suppose in the model of Section 7.2 that we also wanted to obtain information
about the amount of idle time a server would experience in a day. Explain how
this could be accomplished.

3. Suppose that jobs arrive at a single server queueing system according to a
nonhomogeneous Poisson process, whose rate is initially 4 per hour, increases
steadily until it hits 19 per hour after 5 hours, and then decreases steadily until
it hits 4 per hour after an additional 5 hours. The rate then repeats indefinitely
in this fashion—that is, λ(t +10) = λ(t). Suppose that the service distribution
is exponential with rate 25 per hour. Suppose also that whenever the server
completes a service and finds no jobs waiting he goes on break for a time that
is uniformly distributed on (0, 0.3). If upon returning from his break there are
no jobs waiting, then he goes on another break. Use simulation to estimate the
expected amount of time that the server is on break in the first 100 hours of
operation. Do 500 simulation runs.

4. Fill in the updating scheme for Case 3 in the model of Section 7.4.

5. Consider a single-server queueing model in which customers arrive according
to a nonhomogeneous Poisson process. Upon arriving they either enter service
if the server is free or else they join the queue. Suppose, however, that each
customer will only wait a random amount of time, having distribution F ,
in queue before leaving the system. Let G denote the service distribution.
Define variables and events so as to analyze this model, and give the updating
procedures. Suppose we are interested in estimating the average number of lost
customers by time T , where a customer that departs before entering service is
considered lost.

6. Suppose in Exercise 5 that the arrival process is a Poisson process with rate
5; F is the uniform distribution on (0, 5); and G is an exponential random
variable with rate 4. Do 500 simulation runs to estimate the expected number
of lost customers by time 100. Assume that customers are served in their order
of arrival.

7. Repeat Exercise 6, this time supposing that each time the server completes a
service, the next customer to be served is the one who has the earliest queue
departure time. That is, if two customers are waiting and one would depart the
queue if his service has not yet begun by time t1 and the other if her service
had not yet begun by time t2, then the former would enter service if t1 < t2 and
the latter otherwise. Do you think this will increase or decrease the average
number that depart before entering service?

Exercises 131

8. In the model of Section 7.4, suppose that G1 is the exponential distribution
with rate 4 and G2 is exponential with rate 3. Suppose that the arrivals are
according to a Poisson process with rate 6. Write a simulation program to
generate data corresponding to the first 1000 arrivals. Use it to estimate

(a) the average time spent in the system by these customers.
(b) the proportion of services performed by server 1.
(c) Do a second simulation of the first 1000 arrivals and use it to answer

parts (a) and (b). Compare your answers to the ones previously obtained.

9. Suppose in the two-server parallel model of Section 7.4 that each server has its
own queue, and that upon arrival a customer joins the shortest one. An arrival
finding both queues at the same size (or finding both servers empty) goes to
server 1.

(a) Determine appropriate variables and events to analyze this model and
give the updating procedure.

Using the same distributions and parameters as in Exercise 8, find

(b) the average time spent in the system by the first 1000 customers.
(c) the proportion of the first 1000 services performed by server 1.

Before running your program, do you expect your answers in parts (b) and (c)
to be larger or smaller than the corresponding answers in Exercise 8?

10. Suppose in Exercise 9 that each arrival is sent to server 1 with probability p,
independent of anything else.

(a) Determine appropriate variables and events to analyze this model and
give the updating procedure.

(b) Using the parameters of Exercise 9, and taking p equal to your estimate
of part (c) of that problem, simulate the system to estimate the quantities
defined in part (b) of Exercise 9. Do you expect your answer to be larger
or smaller than that obtained in Exercise 9?

11. Suppose that claims are made to an insurance company according to a Poisson
process with rate 10 per day. The amount of a claim is a random variable that has
an exponential distribution with mean $1000. The insurance company receives
payments continuously in time at a constant rate of $11,000 per day. Starting
with an initial capital of $25,000, use simulation to estimate the probability
that the firm’s capital is always positive throughout its first 365 days.

12. Suppose in the model of Section 7.6 that, conditional on the event that the
firm’s capital goes negative before time T , we are also interested in the time

132 7 The Discrete Event Simulation Approach

at which it becomes negative and the amount of the shortfall. Explain how we
can use the given simulation methodology to obtain relevant data.

13. For the repair model presented in Section 7.7:

(a) Write a computer program for this model.

(b) Use your program to estimate the mean crash time in the case where
n = 4, s = 3, F(x) = 1 − e−x , and G(x) = 1 − e−2x .

14. In the model of Section 7.7, suppose that the repair facility consists of two
servers, each of whom takes a random amount of time having distribution G
to service a failed machine. Draw a flow diagram for this system.

15. A system experiences shocks that occur in accordance with a Poisson proc-
ess having a rate of 1/hour. Each shock has a certain amount of damage
associated with it. These damages are assumed to be independent random
variables (which are also independent of the times at which the shocks occur),
having the common density function

f (x) = xe−x , x > 0

Damages dissipate in time at an exponential rate α—that is, a shock whose
initial damage is x will have remaining damage value xe−αs at time s after it
occurs. In addition, the damage values are cumulative. Thus, for example, if
by time t there have been a total of two shocks, which originated at times t1

and t2 and had initial damages x1 and x2, then the total damage at time t is∑2
i=1 xi e−α(t−ti). The system fails when the total damage exceeds some fixed

constant C .

(a) Suppose we are interested in utilizing a simulation study to estimate the
mean time at which the system fails. Define the “events” and “variables”
of this model and draw a flow diagram indicating how the simulation is
to be run.

(b) Write a program that would generate k runs.
(c) Verify your program by comparing output with a by-hand calculation.
(d) With α = 0.5, C = 5, and k = 1000, run your program and use the

output to estimate the expected time until the system fails.

16. Messages arrive at a communications facility in accordance with a Poisson
process having a rate of 2/hour. The facility consists of three channels, and an
arriving message will either go to a free channel if any of them are free or else
will be lost if all channels are busy. The amount of time that a message ties up
a channel is a random variable that depends on the weather condition at the
time the message arrives. Specifically, if the message arrives when the weather

Exercises 133

is “good,” then its processing time is a random variable having distribution
function

F(x) = x, 0 < x < 1

whereas if the weather is “bad” when a message arrives, then its processing
time has distribution function

F(x) = x3, 0 < x < 1

Initially, the weather is good, and it alternates between good and bad periods—
with the good periods having fixed lengths of 2 hours and the bad periods
having fixed lengths of 1 hour. (Thus, for example, at time 5 the weather
changes from good to bad.)
Suppose we are interested in the distribution of the number of lost messages
by time T = 100.

(a) Define the events and variables that enable us to use the discrete event
approach.

(b) Write a flow diagram of the above.
(c) Write a program for the above.
(d) Verify your program by comparing an output with a hand calculation.
(e) Run your program to estimate the mean number of lost messages in the

first 100 hours of operation.

17. Estimate, by a simulation study, the expected worth of owning an option
to purchase a stock anytime in the next 20 days for a price of 100 if the
present price of the stock is 100. Assume the model of Section 7.8, with
μ = −0.05, σ = 0.3, and employ the strategy presented there.

18. A shop stocks a certain toy. Customers wanting the toy arrive according to a
Poisson process with rate λ. Each such customer wants to purchase i of these
toys with probability pi , where p1 = 1

2 , p2 = 1
3 , p3 = 1

6 . The shop initially has
4 such toys, and the owner uses a policy of ordering additional toys only when
she has no more toys left. At such times, 10 toys are ordered and immediately
delivered. Any customer whose requirements cannot be exactly met departs
without making a purchase. (For instance, if there are 2 toys in the shop when
a customer wanting 3 arrives then that customer will depart without buying
any.) Suppose that we want to use simulation to estimate the expected number
of customers who depart without making a purchase in the first T units of
time. Show how this can be done using the discrete event approach. Define all
variables and show how to update them.

134 7 The Discrete Event Simulation Approach

Bibliography

Banks, J., and J. Carson, Discrete-Event System Simulation. Prentice-Hall, New Jersey,
1984.

Clymer, J., Systems Analysis Using Simulation and Markov Models. Prentice-Hall, New
Jersey, 1990.

Gottfried, B., Elements of Stochastic Process Simulation. Prentice-Hall, New Jersey, 1984.
Law, A. M., and W. D. Kelton, Simulation Modelling and Analysis, 3rd ed. McGraw-Hill,

New York, 1997.
Mitrani, I., Simulation Techniques for Discrete Event Systems. Cambridge University Press,

Cambridge, U.K., 1982.
Peterson, R., and E. Silver, Decision Systems for Inventory Management and Production

Planning. Wiley, New York, 1979.
Pritsker, A., and C. Pedgen, Introduction to Simulation and SLAM. Halsted Press, New

York, 1979.
Shannon, R. E., Systems Simulation: The Art and Science. Prentice-Hall, New Jersey, 1975.
Solomon, S. L., Simulation of Waiting Line Systems. Prentice-Hall, New Jersey, 1983.

8Statistical Analysis of
Simulated Data

Introduction

A simulation study is usually undertaken to determine the value of some quantity θ

connected with a particular stochastic model. A simulation of the relevant system
results in the output data X , a random variable whose expected value is the quantity
of interest θ . A second independent simulation—that is, a second simulation run—
provides a new and independent random variable having mean θ . This continues
until we have amassed a total of k runs—and the k independent random variables
X1, . . . , Xk—all of which are identically distributed with mean θ . The average of
these k values, X = ∑k

i=1 Xi/k, is then used as an estimator, or approximator,
of θ .

In this chapter we consider the problem of deciding when to stop the simulation
study—that is, deciding on the appropriate value of k. To help us decide when to
stop, we will find it useful to consider the quality of our estimator of θ . In addition,
we will also show how to obtain an interval in which we can assert that θ lies, with
a certain degree of confidence.

The final section of this chapter shows how we can estimate the quality of more
complicated estimators than the sample mean—by using an important statistical
technique known as “bootstrap estimators.”

8.1 The Sample Mean and Sample Variance

Suppose that X1, . . . , Xn are independent random variables having the same
distribution function. Let θ and σ 2 denote, respectively, their mean and

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00008-5
© 2013 Elsevier Inc. All rights reserved. 135

http://dx.doi.org/10.1016/B978-0-12-415825-2.00008-5

136 8 Statistical Analysis of Simulated Data

variance—that is, θ = E[Xi] and σ 2 = Var(Xi). The quantity

X ≡
n∑

i=1

Xi

n

which is the arithmetic average of the n data values, is called the sample mean.
When the population mean θ is unknown, the sample mean is often used to estimate
it.

Because

E[X] = E

[
n∑

i=1

Xi

n

]

=
n∑

i=1

E[Xi]

n

= nθ

n
= θ (8.1)

it follows that X is an unbiased estimator of θ , where we say that an estimator of a
parameter is an unbiased estimator of that parameter if its expected value is equal
to the parameter.

To determine the “worth” of X as an estimator of the population mean θ , we
consider its mean square error—that is, the expected value of the squared difference
between X and θ . Now

E[(X − θ)2] = Var(X) (since E[X] = θ)

= Var

(
1

n

n∑
1

Xi

)

= 1

n2

n∑
i=1

Var(Xi) (by independence)

= σ 2

n
(since Var(Xi) = σ 2) (8.2)

Thus, X , the sample mean of the n data values X1, . . . , Xn , is a random variable
with mean θ and variance σ 2/n. Because a random variable is unlikely to be too
many standard deviations—equal to the square root of its variance—from its mean,
it follows that X is a good estimator of θ when σ/

√
n is small.

Remark The justification for the above statement that a random variable is
unlikely to be too many standard deviations away from its mean follows from both
the Chebyshev inequality and, more importantly for simulation studies, from the

8.1 The Sample Mean and Sample Variance 137

central limit theorem. Indeed, for any c > 0, Chebyshev’s inequality (see Section
2.7 of Chapter 2) yields the rather conservative bound

P

{
|X − θ |> cσ√

n

}
� 1

c2

However, when n is large, as will usually be the case in simulations, we can apply
the central limit theorem to assert that (X−θ)/(σ/

√
n) is approximately distributed

as a standard normal random variable; and thus

P{|X − θ |>cσ/
√

n} ≈ P{|Z |>c}, where Z is a standard normal

= 2[1 − �(c)] (8.3)

where � is the standard normal distribution function. For example, since
�(1.96) = 0.975, Equation (8.3) states that the probability that the sample
mean differs from θ by more than 1.96σ/

√
n is approximately 0.05, whereas

the weaker Chebyshev inequality only yields that this probability is less than
1/(1.96)2 = 0.2603. �

The difficulty with directly using the value of σ 2/n as an indication of how
well the sample mean of n data values estimates the population mean is that the
population variance σ 2 is not usually known. Thus, we also need to estimate it.
Since

σ 2 = E[(X − θ)2]

is the average of the square of the difference between a datum value and its
(unknown) mean, it might seem upon using X as the estimator of the mean that a

natural estimator of σ 2 would be
∑n

i=1 (Xi − X)
2
/n, the average of the squared

distances between the data values and the estimated mean. However, to make the
estimator unbiased (and for other technical reasons) we prefer to divide the sum
of squares by n − 1 rather than n.

Definition The quantity S2, defined by

S2 =
∑n

i=1 (Xi − X)
2

n − 1

is called the sample variance.

Using the algebraic identity

n∑
i=1

(Xi − X)
2 =

n∑
i=1

X 2
i − nX

2
(8.4)

whose proof is left as an exercise, we now show that the sample variance is an
unbiased estimator of σ 2.

138 8 Statistical Analysis of Simulated Data

Proposition
E[S2] = σ 2

Proof Using the identity (8.4) we see that

(n − 1)E[S2] = E

[
n∑

i=1

X 2
i

]
− nE[X

2
]

= nE
[
X 2

1

]− nE[X
2
] (8.5)

where the last equality follows since the Xi all have the same distribution. Recalling
that for any random variable Y, Var(Y) = E[Y 2] − (E[Y])2 or, equivalently,

E[Y 2] = Var(Y) + (E[Y])2

we obtain that

E
[
X 2

1

] = Var(X1) + (E[X1])2

= σ 2 + θ 2

and

E[X
2
] = Var(X) + (E[X])2

= σ 2

n
+ θ 2 [from(8.2)and(8.1)]

Thus, from Equation (8.5), we obtain that

(n − 1)E[S2] = n(σ 2 + θ 2) − n

(
σ 2

n
+ θ 2

)
= (n − 1)σ 2

which proves the result. �

We use the sample variance S2 as our estimator of the population variance σ 2,
and we use S = √

S2, the so-called sample standard deviation, as our estimator
of σ .

Suppose now that, as in a simulation, we have the option of continually
generating additional data values Xi . If our objective is to estimate the value of
θ = E[Xi], when should we stop generating new data values? The answer to
this question is that we should first choose an acceptable value d for the standard
deviation of our estimator—for if d is the standard deviation of the estimator X ,
then we can, for example, be 95% certain that X will not differ from θ by more
than 1.96d . We should then continue to generate new data until we have generated
n data values for which our estimate of σ/

√
n—namely, S/

√
n—is less than the

acceptable value d . Since the sample standard deviation S may not be a particularly

8.1 The Sample Mean and Sample Variance 139

good estimate of σ (nor may the normal approximation be valid) when the sample
size is small, we thus recommend the following procedure to determine when to
stop generating new data values.

A Method for Determining When to Stop Generating New Data

1. Choose an acceptable value d for the standard deviation of the estimator.
2. Generate at least 100 data values.
3. Continue to generate additional data values, stopping when you have

generated k values and S/
√

k < d , where S is the sample standard deviation
based on those k values.

4. The estimate of θ is given by X = ∑k
i=1 Xi/k.

Example 8a Consider a service system in which no new customers are
allowed to enter after 5 p.m. Suppose that each day follows the same probability
law and that we are interested in estimating the expected time at which the last
customer departs the system. Furthermore, suppose we want to be at least 95%
certain that our estimated answer will not differ from the true value by more than
15 seconds.

To satisfy the above requirement it is necessary that we continually generate data
values relating to the time at which the last customer departs (each time by doing
a simulation run) until we have generated a total of k values, where k is at least
100 and is such that 1.96S/

√
k < 15—where S is the sample standard deviation

(measured in seconds) of these k data values. Our estimate of the expected time at
which the last customer departs will be the average of the k data values. �

In order to use the above technique for determining when to stop generating
new values, it would be valuable if we had a method for recursively computing the
successive sample means and sample variances, rather than having to recompute
from scratch each timea new datum value is generated. We now show how this can
be done. Consider the sequence of data values X1, X2, . . ., and let

X j =
j∑

i=1

Xi

j

and

S2
j =

j∑
i=1

(Xi − X j)
2

j − 1
, j � 2

denote, respectively, the sample mean and sample variance of the first j data values.
The following recursion should be used to successively compute the current value
of the sample mean and sample variance.

140 8 Statistical Analysis of Simulated Data

With S2
1 = 0, X 0 = 0,

X j+1 = X j + X j+1 − X j

j + 1
(8.6)

S2
j+1 =

(
1 − 1

j

)
S2

j + (j + 1)(X j+1 − X j)
2 (8.7)

Example 8b If the first three data values are X1 = 5, X2 = 14, X3 = 9, then
Equations (8.6) and (8.7) yield that

X 1 = 5

X 2 = 5 + 9

2
= 19

2

S2
2 = 2

(
19

2
− 5

)2

= 81

2

X 3 = 19

2
+ 1

3

(
9 − 19

2

)
= 28

3

S2
3 = 81

4
+ 3

(
28

3
− 19

2

)2

= 61

3
�

The analysis is somewhat modified when the data values are Bernoulli (or 0,
1) random variables, as is the case when we are estimating a probability. That is,
suppose we can generate random variables X , such that

Xi =
{

1 with probabilityp
0 with probability1 − p

and suppose we are interested in estimating E[Xi] = p. Since, in this situation,

Var(Xi) = p(1 − p)

there is no need to utilize the sample variance to estimate Var(Xi). Indeed, if we
have generated n values X1, . . . , Xn , then as the estimate of p will be

Xn =
n∑

i=1

Xi

n

a natural estimate of Var(Xi) is Xn(1 − Xn). Hence, in this case, we have the
following method for deciding when to stop.

1. Choose an acceptable value d for the standard deviation of the estimator.
2. Generate at least 100 data values.

8.2 Interval Estimates of a Population Mean 141

3. Continue to generate additional data values, stopping when you have
generated k values and [Xk(1 − Xk)/k]1/2 < d .

4. The estimate of p is Xk , the average of the k data values.

Example 8c Suppose, in Example 8a, we were interested in estimating the
probability that there was still a customer in the store at 5:30. To do so, we would
simulate successive days and let

Xi =
{

1 if there is a customer present at 5:30 on day i
0 otherwise

We would simulate at least 100 days and continue to simulate until the kth day,
where k is such that [pk(1 − pk)/k]1/2 < d , where pk = Xk is the proportion
of these k days in which there is a customer present at 5:30 and where d is an
acceptable value for the standard deviation of the estimator pk . �

8.2 Interval Estimates of a Population Mean

Suppose again that X1, X2, . . . , Xn are independent random variables from a
common distribution having mean θ and variance σ 2. Although the sample mean
X = ∑n

i=1 Xi/n is an effective estimator of θ , we do not really expect that X will
be equal to θ but rather that it will be “close.” As a result, it is sometimes more
valuable to be able to specify an interval for which we have a certain degree of
confidence that θ lies within.

To obtain such an interval we need the (approximate) distribution of the estimator
X . To determine this, first recall, from Equations (8.1) and (8.2), that

E[X] = θ, Var(X) = σ 2

n

and thus, from the central limit theorem, it follows that for large n

√
n
(X − θ)

σ
∼̇N (0, 1)

where ∼̇N (0, 1) means “is approximately distributed as a standard normal.” In
addition, if we replace the unknown standard deviation σ by its estimator S, the
sample standard deviation, then it still remains the case (by a result known as
Slutsky’s theorem) that the resulting quantity is approximately a standard normal.
That is, when n is large √

n(X − θ)/S∼̇N (0, 1) (8.8)

Now for any α, 0 < α < 1, let zα be such that

P{Z > zα} = α

142 8 Statistical Analysis of Simulated Data

P{Z < −x} P{Z > x}

−x x0

Figure 8.1. Standard normal density.

where Z is a standard normal random variable. (For example, z.025 = 1.96.) It
follows from the symmetry of the standard normal density function about the
origin that z1−α , the point at which the area under the density to its right is equal
to 1 − α, is such that (see Figure 8.1)

z1−α = −zα

Therefore (see Figure 8.1)

P{−zα/2 < Z < zα/2} = 1 − α

It thus follows from (8.8) that

P

{
−zα/2 <

√
n
(X − θ)

S
< zα/2

}
≈ 1 − α

or, equivalently, upon multiplying by -1,

P

{
−zα/2 <

√
n
(θ − X)

S
< zα/2

}
≈ 1 − α

which is equivalent to

P

{
X − zα/2

S√
n

< θ < X + zα/2
S√
n

}
≈ 1 − α (8.9)

In other words, with probability 1 − α the population mean θ will lie within the
region X ± zα/2 S/

√
n.

Definition If the observed values of the sample mean and the sample standard
deviation are X = x and S = s, call the interval x ± zα/2s/

√
n an (approximate)

100(1 − α) percent confidence interval estimate of θ .

8.2 Interval Estimates of a Population Mean 143

Remarks

1. To clarify the meaning of a “100(1−α)percent confidence interval,” consider,
for example, the case where α = 0.05, and so zα/2 = 1.96. Now before the
data are observed, it will be true, with probability (approximately) equal to
0.95, that the sample mean X and the sample standard deviation S will be
such that θ will lie between X ± 1.96S/

√
n. After X and S are observed to

equal, respectively, x and s, there is no longer any probability concerning
whether θ lies in the interval x ± 1.96s/

√
n, for either it does or it does

not. However, we are “95% confident” that in this situation it does lie in this
interval (because we know that over the long run such intervals will indeed
contain the mean 95 percent of the time).

2. (A technical remark.) The above analysis is based on Equation (8.8), which
states that

√
n(X −θ)/S is approximately a standard normal random variable

when n is large. Now if the original data values Xi were themselves normally
distributed, then it is known that this quantity has (exactly) a t-distribution
with n − 1 degrees of freedom. For this reason, many authors have proposed
using this approximate distribution in the general case where the original
distribution need not be normal. However, since it is not clear that the t-
distribution with n − 1 degrees of freedom results in a better approximation
than the normal in the general case, and because these two distributions are
approximately equal for large n, we have used the normal approximation
rather than introducing the t-random variable.

Consider now the case, as in a simulation study, where additional data values
can be generated and the question is to determine when to stop generating new
data values. One solution to this is to initially choose values α and l and to continue
generating data until the approximate 100(1 − α) percent confidence interval
estimate of θ is less than l. Since the length of this interval will be 2zα/2 S/

√
n

we can accomplish this by the following technique.

1. Generate at least 100 data values.
2. Continue to generate additional data values, stopping when the number of

values you have generated—call it k—is such that 2zα/2 S/
√

k < l, where
S is the sample standard deviation based on those k values. [The value of S
should be constantly updated, using the recursion given by (8.6) and (8.7),
as new data are generated.]

3. If x and s are the observed values of X and S, then the 100(1 − α) percent
confidence interval estimate of θ , whose length is less than l, is x ±zα/2s/

√
k.

A Technical Remark The more statistically sophisticated reader might
wonder about our use of an approximate confidence interval whose theory was
based on the assumption that the sample size was fixed when in the above situation

144 8 Statistical Analysis of Simulated Data

the sample size is clearly a random variable depending on the data values generated.
This, however, can be justified when the sample size is large, and so from the
viewpoint of simulation we can safely ignore this subtlety. �

As noted in the previous section, the analysis is modified when X1, . . . , Xn are
Bernoulli random variables such that

Xi =
{

1 with probabilityp
0 with probability1 − p

Since in this case Var(Xi) can be estimated by X(1 − X), it follows that the
equivalent statement to Equation (8.8) is that when n is large

√
n

(X − p)√
X(1 − X)

∼̇N (0, 1) (8.10)

Hence, for any α,

P

{
−zα/2 <

√
n

(X − p)√
X(1 − X)

< zα/2

}
= 1 − α

or, equivalently,

P

{
X − zα/2

√
X(1 − X)/n < p < X + zα/2

√
X(1 − X)/n

}
= 1 − α

Hence, if the observed value of X is pn , we say that the “100(1 − α) percent
confidence interval estimate” of p is

pn ± zα/2

√
pn(1 − pn)/n

8.3 The Bootstrapping Technique for Estimating Mean Square
Errors

Suppose now that X1, . . . , Xn are independent random variables having a common
distribution function F , and suppose we are interested in using them to estimate
some parameter θ(F) of the distribution F . For example, θ(F) could be (as in the
previous sections of this chapter) the mean of F , or it could be the median or the
variance of F , or any other parameter of F . Suppose further that an estimator of
θ(F)—call it g(X1, . . . , Xn)—has been proposed, and in order to judge its worth
as an estimator of θ(F) we are interested in estimating its mean square error. That
is, we are interested in estimating the value of

MSE(F) ≡ EF [(g(X1, . . . , Xn) − θ(F))2]

8.3 The Bootstrapping Technique for Estimating MSE 145

[where our choice of notation MSE(F) suppresses the dependence on the estimator
g, and where we have used the notation EF to indicate that the expectation is to be
taken under the assumption that the random variables all have distribution F]. Now
whereas there is an immediate estimator of the above MSE—namely, S2/n—when
θ(F) = E[Xi] and g(X1, . . . , Xn) = X , it is not at all that apparent how it can be
estimated otherwise. We now present a useful technique, known as the bootstrap
technique, for estimating this mean square error.

To begin, note that if the distribution function F were known then we could
theoretically compute the expected square of the difference between θ and its
estimator; that is, we could compute the mean square error. However, after we
observe the values of the n data points, we have a pretty good idea what the
underlying distribution looks like. Indeed, suppose that the observed values of the
data are Xi = xi , i = 1, . . . , n. We can now estimate the underlying distribution
function F by the so-called empirical distribution function Fe, where Fe(x), the
estimate of F(x), the probability that a datum value is less than or equal to x , is
just the proportion of the n data values that are less than or equal to x . That is,

Fe(x) = number of i : Xi � x

n

Another way of thinking about Fe is that it is the distribution function of a random
variable Xe which is equally likely to take on any of the n values xi , i = 1, . . . , n.
(If the values xi are not all distinct, then the above is to be interpreted to mean
that Xe will equal the value xi with a probability equal to the number of j such
that x j = xi divided by n; that is, if n = 3 and x1 = x2 = 1, x3 = 2, then
Xe is a random variable that takes on the value 1 with probability 2

3 and 2 with
probability 1

3 .)
Now if Fe is “close” to F , as it should be when n is large [indeed, the strong

law of large numbers implies that with probability 1, Fe(x) converges to F(x) as
n → ∞, and another result, known as the Glivenko–Cantelli theorem, states that
this convergence will, with probability 1, be uniform in x], then θ(Fe) will probably
be close to θ(F)—assuming that θ is, in some sense, a continuous function of the
distribution—and MSE(F) should approximately be equal to

MSE(Fe) = EFe [(g(X1, . . . , Xn) − θ(Fe))
2]

In the above expression the Xi are to be regarded as being independent random
variables having distribution function Fe. The quantity MSE(Fe) is called the
bootstrap approximation to the mean square error MSE(F).

To obtain a feel for the effectiveness of the bootstrap approximation to the mean
square error, let us consider the one case where its use is not necessary—namely,
when estimating the mean of a distribution by the sample mean X . (Its use is not
necessary in this case because there already is an effective way of estimating the
mean square error E[(X − θ)2] = σ 2/n—namely, by using the observed value of
S2/n.)

146 8 Statistical Analysis of Simulated Data

Example 8d Suppose we are interested in estimating θ(F) = E[X] by using
the sample mean X = ∑n

i=1 Xi/n. If the observed data are xi , i = 1, . . . , n, then
the empirical distribution Fe puts weight 1/n on each of the points x1, . . . , xn

(combining weights if the xi are not all distinct). Hence the mean of Fe is
θ(Fe) = x = ∑n

i=1 xi/n, and thus the bootstrap estimate of the mean square
error—call it MSE (Fe)—is given by

MSE(Fe) = EFe

⎡
⎣(n∑

i=1

Xi

n
− x

)2
⎤
⎦

where X1, . . . , Xn are independent random variables each distributed according to
Fe. Since

EFe

[
n∑

i=1

Xi

n

]
= EFe [X] = x

it follows that

MSE(Fe) = VarFe

(
n∑

i=1

Xi

n

)

= VarFe (X)

n

Now

VarFe (X) = EFe [(X − EFe [X])2]

= EFe [(X − x)2]

= 1

n

[
n∑

i=1

(xi − x)2

]

and so

MSE(Fe) =
∑n

i=1(xi − x)2

n2

which compares quite nicely with S2/n, the usual estimate of the mean square
error. Indeed, because the observed value of S2/n is

∑n
i=1(xi − x)2/[n(n − 1)],

the bootstrap approximation is almost identical. �

If the data values are Xi = xi , i = 1, . . . , n, then, as the empirical distribution
function Fe puts weight 1/n on each of the points xi , it is usually easy to compute
the value of θ(Fe): for example, if the parameter of interest θ(F) was the variance
of the distribution F , then θ(Fe) = VarFe (X) = ∑n

i=1(xi − x)2/n. To determine
the bootstrap approximation to the mean square error we then have to compute

MSE(Fe) = EFe [(g(X1, . . . , Xn) − θ(Fe))
2]

8.3 The Bootstrapping Technique for Estimating MSE 147

However, since the above expectation is to be computed under the assumption
that X1, . . . , Xn are independent random variables distributed according to Fe, it
follows that the vector (X1, . . . , Xn) is equally likely to take on any of the nn

possible values (xi1 , xi2 , . . . , xin), i j ∈ {1, 2, . . . , n}, j = 1, . . . , n. Therefore,

MSE(Fe) =
∑

in

· · ·
∑

i1

[g(xi1 , . . . , xin) − θ(Fe)]
2

nn

where each i j goes from 1 to n, and so the computation of MSE (Fe) requires, in
general, summing nn terms—an impossible task when n is large.

However, as we know, there is an effective way to approximate the average of a
large number of terms, namely, by using simulation. Indeed, we could generate a set
of n independent random variables X 1

1, . . . , X 1
n each having distribution function

Fe and then set

Y1 = [
g
(
X 1

1, . . . , X 1
n

)− θ(Fe)
]2

Next, we generate a second set X 2
1, . . . , X 2

n and compute

Y2 = [
g
(
X 2

1, . . . , X 2
n

)− θ(Fe)
]2

and so on, until we have collected the variables Y1, Y2, . . . , Yr . Because these Yi

are independent random variables having mean MSE(Fe), it follows that we can
use their average

∑r
i=1 Yi/r as an estimate of MSE(Fe).

Remarks

1. It is quite easy to generate a random variable X having distribution Fe.
Because such a random variable should be equally likely to be x1, . . . , xn ,
just generate a random number U and set X = xI , where I = Int(nU)+1. (It
is easy to check that this will still work even when the xi are not all distinct.)

2. The above simulation allows us to approximate MSE(Fe), which is itself
an approximation to the desired MSE(F). As such, it has been reported
that roughly 100 simulation runs—that is, choosing r = 100—is usually
sufficient. �

The following example illustrates the use of the bootstrap in analyzing the output
of a queueing simulation.

Example 8e Suppose in Example 8a that we are interested in estimating the
long-run average amount of time a customer spends in the system. That is, letting
Wi be the amount of time the i th entering customer spends in the system, i � 1,
we are interested in

θ ≡ lim
n→∞

W1 + W2 + · · · + Wn

n

148 8 Statistical Analysis of Simulated Data

To show that the above limit does indeed exist (note that the random variables Wi

are neither independent nor identically distributed), let Ni denote the number of
customers that arrive on day i , and let

D1 = W1 + · · · + WN1

D2 = WN1+1 + · · · + WN1+N2

and, in general, for i > 2,

Di = WN1+···+Ni−1+1 + · · · + WN1+···+Ni

In words, Di is the sum of the times in the system of all arrivals on day i . We can
now express θ as

θ = lim
m→∞

D1 + D2 + · · · + Dm

N1 + N2 + · · · + Nm

where the above follows because the ratio is just the average time in the system of all
customers arriving in the first m days. Upon dividing numerator and denominator
by m, we obtain

θ = lim
m→∞

(D1 + · · · + Dm)/m

(N1 + · · · + Nm)/m

Now as each day follows the same probability law, it follows that the random
variables D1, . . . , Dm are all independent and identically distributed, as are the
random variables N1, . . . , Nm . Hence, by the strong law of large numbers, it follows
that the average of the first m of the Di will, with probability 1, converge to their
common expectation, with a similar statement being true for the Ni . Therefore, we
see that

θ = E[D]

E[N]

where E[N] is the expected number of customers to arrive in a day, and E[D] is
the expected sum of the times those customers spend in the system.

To estimate θ we can thus simulate the system over k days, collecting on the i th
run the data Ni , Di , where Ni is the number of customers arriving on day i and
Di is the sum of the times they spend in the system, i = 1, . . . , k. Because the
quantity E[D] can then be estimated by

D = D1 + D2 + · · · + Dk

k

and E[N] by

N = N1 + N2 + · · · + Nk

k
it follows that θ = E[D]/E[N] can be estimated by

Estimate of θ = D

N
= D1 + · · · + Dk

N1 + · · · + Nk

8.3 The Bootstrapping Technique for Estimating MSE 149

which, it should be noted, is just the average time in the system of all arrivals
during the first k days.

To estimate

MSE = E

⎡
⎣
(∑k

i=1 Di∑k
i=1 Ni

− θ

)2
⎤
⎦

we employ the bootstrap approach. Suppose the observed value of Di , Ni is
di , ni , i = 1, . . . , k. That is, suppose that the simulation resulted in ni arrivals
on day i spending a total time di in the system. Thus, the empirical joint
distribution function of the random vector D, N puts equal weight on the k pairs
di , ni , i = 1, . . . , k. That is, under the empirical distribution function we have

PFe {D = di , N = ni } = 1

k
, i = 1, . . . , k

Hence,

EFe [D] = d =
k∑

i=1

di/k, EFe [N] = n =
k∑

i=1

ni/k

and thus,

θ(Fe) = d

n

Hence,

MSE(Fe) = EFe

⎡
⎣
(∑k

i=1 Di∑k
i=1 Ni

− d

n

)2
⎤
⎦

where the above is to be computed under the assumption that the k pairs of random
vectors Di , Ni are independently distributed according to Fe.

Since an exact computation of MSE(Fe) would require computing the sum of
kk terms, we now perform a simulation experiment to approximate it. We generate
k independent pairs of random vectors D1

i , N 1
i , i = 1, . . . , k, according to the

empirical distribution function Fe, and then compute

Y1 =
(∑k

i=1 D1
i∑k

i=1 N 1
i

− d

n

)2

We then generate a second set D2
i , N 2

i and compute the corresponding Y2.
This continues until we have generated the r values Y1, . . . , Yr (where r =
100 should suffice). The average of these r values,

∑r
i=1 Yi/r , is then used

to estimate MSE(Fe), which is itself our estimate of MSE, the mean square
error of our estimate of the average amount of time a customer spends in the
system. �

150 8 Statistical Analysis of Simulated Data

Remark The Regenerative Approach The foregoing analysis
assumed that each day independently followed the same probability law. In certain
applications, the same probability law describes the system not over days of fixed
lengths but rather over cycles whose lengths are random. For example, consider a
queueing system in which customers arrive in accordance with a Poisson process,
and suppose that the first customer arrives at time 0. If the random time T represents
the next time that an arrival finds the system empty, then we say that the time from
0 to T constitutes the first cycle. The second cycle would be the time from T
until the first time point after T that an arrival finds the system empty, and so on.
It is easy to see, in most models, that the movements of the process over each
cycle are independent and identically distributed. Hence, if we regard a cycle as
being a “day,” then all of the preceding analysis remains valid. For example, θ , the
amount of time that a customer spends in the system, is given by θ = E[D]/E[N],
where D is the sum of the times in the system of all arrivals in a cycle and N is
the number of such arrivals. If we now generate k cycles, our estimate of θ is
still

∑k
i=1 Di/

∑k
i=1 Ni . In addition, the mean square error of this estimate can be

approximated by using the bootstrap approach exactly as above.
The technique of analyzing a system by simulating “cycles,” that is, random

intervals during which the process follows the same probability law, is called the
regenerative approach.

Exercises

1. For any set of numbers x1, . . . , xn , prove algebraically that

n∑
i=1

(xi − x)2 =
n∑

i=1

x2
i − nx2

where x = ∑n
i=1 xi/n.

2. Give a probabilistic proof of the result of Exercise 1, by letting X denote a
random variable that is equally likely to take on any of the values x1, . . . , xn ,
and then by applying the identity Var(X) = E[X 2] − (E[X])2.

3. Write a program that uses the recursions given by Equations (8.6) and (8.7) to
calculate the sample mean and sample variance of a data set.

4. Continue to generate standard normal random variables until you have
generated n of them, where n � 100 is such that S/

√
n < 0.1, where S

is the sample standard deviation of the n data values.

(a) How many normals do you think will be generated?
(b) How many normals did you generate?
(c) What is the sample mean of all the normals generated?
(d) What is the sample variance?
(e) Comment on the results of (c) and (d). Were they surprising?

Exercises 151

5. Repeat Exercise 4 with the exception that you now continue generating
standard normals until S/

√
n < 0.01.

6. Estimate
∫ 1

0 exp(x2)dx by generating random numbers. Generate at least 100
values and stop when the standard deviation of your estimator is less than 0.01.

7. To estimate E[X], X1, . . . , X16 have been simulated with the following values
resulting: 10, 11, 10.5, 11.5, 14, 8, 13, 6, 15, 10, 11.5, 10.5, 12, 8, 16, 5. Based
on these data, if we want the standard deviation of the estimator of E[X] to be
less than 0.1, roughly how many additional simulation runs will be needed?
Exercises 8 and 9 are concerned with estimating e.

8. It can be shown that if we add random numbers until their sum exceeds 1, then
the expected number added is equal to e. That is, if

N = min

{
n:

n∑
i=1

Ui > 1

}

then E[N] = e.

(a) Use this preceding to estimate e, using 1000 simulation runs.
(b) Estimate the variance of the estimator in (a) and give a 95 percent

confidence interval estimate of e.

9. Consider a sequence of random numbers and let M denote the first one that is
less than its predecessor. That is,

M = min{n:U1 � U2 � · · · � Un−1 > Un}
(a) Argue that P{M > n} = 1

n! , n � 0.

(b) Use the identity E[M] = ∑∞
n=0 P{M > n} to show that E[M] = e.

(c) Use part (b) to estimate e, using 1000 simulation runs.
(d) Estimate the variance of the estimator in (c) and give a 95 percent

confidence interval estimate of e.

10. Use the approach that is presented in Example 3a of Chapter 3 to obtain an
interval of size less than 0.1, which we can assert, with 95 percent confidence,
contains π . How many runs were necessary?

11. Repeat Exercise 10 when we want the interval to be no greater than 0.01.
12. To estimate θ , we generated 20 independent values having mean θ . If the

successive values obtained were

102, 112, 131, 107, 114, 95, 133, 145, 139, 117

93, 111, 124, 122, 136, 141, 119, 122, 151, 143

how many additional random variables do you think we will have to generate
if we want to be 99 percent certain that our final estimate of θ is correct to
within ±0.5?

152 8 Statistical Analysis of Simulated Data

13. Let X1, . . . , Xn be independent and identically distributed random variables
having unknown mean μ. For given constants a < b, we are interested in
estimating p = P{a <

∑n
i=1 Xi/n − μ < b}.

(a) Explain how we can use the bootstrap approach to estimate p.
(b) Estimate p if n = 10 and the values of the Xi are 56, 101, 78, 67, 93, 87,

64, 72, 80, and 69. Take a = −5, b = 5.

In the following three exercises X1, . . . , Xn is a sample from a distribution
whose variance is (the unknown) σ 2. We are planning to estimate σ 2 by the
sample variance S2 = ∑n

i=1(Xi −X)2/(n−1), and we want to use the bootstrap
technique to estimate Var(S2).

14. If n = 2 and X1 = 1 and X2 = 3, what is the bootstrap estimate of Var(S2)?
15. If n = 15 and the data are

5, 4, 9, 6, 21, 17, 11, 20, 7, 10, 21, 15, 13, 16, 8

approximate (by a simulation) the bootstrap estimate of Var(S2).
16. Consider a single-server system in which potential customers arrive in

accordance with a Poisson process having rate 4.0. A potential customer will
only enter if there are three or fewer other customers in the system when he
or she arrives. The service time of a customer is exponential with rate 4.2.
No additional customers are allowed in after time T = 8. (All time units are
per hour.) Develop a simulation study to estimate the average amount of time
that an entering customer spends in the system. Using the bootstrap approach,
estimate the mean square error of your estimator.

Bibliography

Bratley, P., B. L. Fox, and L. E. Schrage, A Guide to Simulation, 2nd ed. Springer-Verlag,
New York, 1988.

Crane, M. A., and A. J. Lemoine, An Introducion to the Regenerative Method for Simulation
Analysis. Springer-Verlag, New York, 1977.

Efron, B., and R. Tibshirani, Introduction to the Bootstrap. Chapman-Hall, New York, 1993.
Kleijnen, J. P. C., Statistical Techniques in Simulation, Parts 1 and 2. Marcel Dekker,

New York, 1974/1975.
Law, A. M., and W. D. Kelton, Simulation Modelling and Analysis, 3rd ed. McGraw-Hill,

New York, 1997.

9Variance Reduction
Techniques

Introduction

In a typical scenario for a simulation study, one is interested in determining θ ,
a parameter connected with some stochastic model. To estimate θ , the model is
simulated to obtain, among other things, the output datum X which is such that
θ = E[X]. Repeated simulation runs, the ith one yielding the output variable Xi ,
are performed. The simulation study is then terminated when n runs have been
performed and the estimate of θ is given by X = ∑n

i=1 Xi/n. Because this results
in an unbiased estimate of θ , it follows that its mean square error is equal to its
variance. That is,

MSE = E[(X − θ)2] = Var(X) = Var(X)

n

Hence, if we can obtain a different unbiased estimate of θ having a smaller variance
than does X , we would obtain an improved estimator.

In this chapter we present a variety of different methods that one can attempt to
use so as to reduce the variance of the (so-called raw) simulation estimate X .

However, before presenting these variance reduction techniques, let us illustrate
the potential pitfalls, even in quite simple models, of using the raw simulation
estimator.

Example 9a Quality Control Consider a process that produces items
sequentially. Suppose that these items have measurable values attached to them
and that when the process is “in control” these values (suitably normalized) come
from a standard normal distribution. Suppose further that when the process goes
“out of control” the distribution of these values changes from the standard normal
to some other distribution.

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00009-7
© 2013 Elsevier Inc. All rights reserved. 153

http://dx.doi.org/10.1016/B978-0-12-415825-2.00009-7

154 9 Variance Reduction Techniques

To help detect when the process goes out of control the following type of
procedure, called an exponentially weighted moving-average control rule, is often
used. Let X1, X2, . . . denote the sequence of data values. For a fixed value
α, 0 � α � 1, define the sequence Sn, n � 0, by

S0 = 0

Sn = αSn−1 + (1 − α)Xn, n � 1,

Now when the process is in control, all the Xn have mean 0, and thus it is easy
to verify that, under this condition, the exponentially weighted moving-average
values Sn also have mean 0. The moving-average control rule is to fix a constant
B, along with the value of α, and then to declare the process “out of control” when
|Sn| exceeds B. That is, the process is declared out of control at the random time
N, where

N = Min{n : |Sn| > B}
Now it is clear that eventually |Sn| will exceed B and so the process will be declared
out of control even if it is still working properly—that is, even when the data values
are being generated by a standard normal distribution. To make sure that this does
not occur too frequently, it is prudent to choose α and B so that, when the Xn, n � 1,
are indeed coming from a standard normal distribution, E[N] is large. Suppose
that it has been decided that, under these conditions, a value for E[N] of 800 is
acceptable. Suppose further that it is claimed that the values α = 0.9 and B = 0.8
achieve a value of E[N] of around 800. How can we check this claim?

One way of verifying the above claim is by simulation. Namely, we can generate
standard normals Xn, n � 1, until |Sn| exceeds 0.8 (where α = 0.9 in the defining
equation for Sn). If N1 denotes the number of normals needed until this occurs,
then, for our first simulation run, we have the output variable N1. We then generate
other runs, and our estimate of E[N] is the average value of the output data obtained
over all runs.

However, let us suppose that we want to be 99 percent confident that our estimate
of E[N], under the in-control assumption, is accurate to within ±0.1. Hence, since
99 percent of the time a normal random variable is within±2.58 standard deviations
of its mean (i.e., z.005 = 2.58), it follows that the number of runs needed—call it
n—is such that

2.58σn√
n

≈ 0.1

where σn is the sample standard deviation based on the first n data values. Now σn

will approximately equal σ(N), the standard deviation of N, and we now argue that
this is approximately equal to E[N]. The argument runs as follows: Since we are
assuming that the process remains in control throughout, most of the time the value
of the exponentially weighted moving average is near the origin. Occasionally, by
chance, it gets large and approaches, in absolute value, B. At such times it may
go beyond B and the run ends, or there may be a string of normal data values

9.1 The Use of Antithetic Variables 155

which, after a short time, eliminate the fact that the moving average had been
large (this is so because the old values of Si are continually multiplied by 0.9 and
so lose their effect). Hence, if we know that the process has not yet gone out of
control by some fixed time k, then, no matter what the value of k, it would seem
that the value of Sk is around the origin. In other words, it intuitively appears
that the distribution of time until the moving average exceeds the control limits
is approximately memoryless; that is, it is approximately an exponential random
variable. But for an exponential random variable Y, Var(Y) = (E[Y])2. Since
the standard deviation is the square root of the variance, it thus seems intuitive
that, when in control throughout, σ(N) ≈ E[N]. Hence, if the original claim that
E[N] ≈ 800 is correct, the number of runs needed is such that

√
n ≈ 25.8 × 800

or
n ≈ (25.8 × 800)2 ≈ 4.26 × 108

In addition, because each run requires approximately 800 normal random variables
(again assuming the claim is roughly correct), we see that to do this simulation
would require approximately 800 × 4.26 × 108 ≈ 3.41 × 1011 normal random
variables—a formidable task. �

9.1 The Use of Antithetic Variables

Suppose we are interested in using simulation to estimate θ = E[X] and suppose
we have generated X1 and X2, identically distributed random variables having
mean θ . Then

Var

(
X1 + X2

2

)
= 1

4
Var(X1) + [Var(X2) + 2Cov(X1, X2)]

Hence it would be advantageous (in the sense that the variance would be reduced)
if X1 and X2 rather than being independent were negatively correlated.

To see how we might arrange for X1 and X2 to be negatively correlated, suppose
that X1 is a function of m random numbers: that is, suppose that

X1 = h(U1, U2, . . . , Um)

where U1, . . . , Um are m independent random numbers. Now if U is a random
number—that is, U is uniformly distributed on (0, 1)—then so is 1−U . Hence the
random variable

X2 = h(1 − U1, 1 − U2, . . . , 1 − Um)

has the same distribution as X1. In addition, since 1 − U is clearly negatively
correlated with U, we might hope that X2 might be negatively correlated with X1;

156 9 Variance Reduction Techniques

and indeed that result can be proved in the special case where h is a monotone
(either increasing or decreasing) function of each of its coordinates. [This result
follows from a more general result which states that two increasing (or decreasing)
functions of a set of independent random variables are positively correlated. Both
results are presented in the Appendix to this chapter.] Hence, in this case, after
we have generated U1, . . . , Um so as to compute X1, rather than generating a
new independent set of m random numbers, we do better by just using the set
1−U1, . . . , 1−Um to compute X2. In addition, it should be noted that we obtain a
double benefit: namely, not only does our resulting estimator have smaller variance
(at least when h is a monotone function), but we are also saved the time of generating
a second set of random numbers.

Example 9b Simulating the Reliability Function Consider a
system of n components, each of which is either functioning or failed. Letting

si =
{

1 if component i works
0 otherwise

we call s = (s1, . . . , sn) the state vector. Suppose also that there is a nondecreasing
function φ(s1, . . . , sn) such that

φ(s1, . . . , sn) =
{

1 if the system works under state vector s1, . . . , sn

0 otherwise

The function φ(s1, . . . , sn) is called the structure function.
Some common structure functions are the following:

(a) The series structure: For the series structure

φ(s1, . . . , sn) = Min
i

si

The series system works only if all its components function.
(b) The parallel structure: For the parallel structure

φ(s1, . . . , sn) = Max
i

si

Hence the parallel system works if at least one of its components works.
(c) The k-of-n system: The structure function

φ(s1, . . . , sn) =
{

1 if
∑n

i=1 si � k
0 otherwise

is called a k-of-n structure function. Since
∑n

i=1 si represents the number of
functioning components, a k-of-n system works if at least k of the n components
are working.

It should be noted that a series system is an n-of-n system, whereas a parallel
system is a 1-of-n system.

9.1 The Use of Antithetic Variables 157

1 4

3

2 5

Figure 9.1. The bridge structure.

(d) The bridge structure: A five-component system for which

φ(s1, s2, s3, s4, s5) = Max(s1s3s5, s2s3s4, s1s4, s2s5)

is said to have a bridge structure. Such a system can be represented
schematically by Figure 9.1. The idea of the diagram is that the system
functions if a signal can go, from left to right, through the system. The signal
can go through any given node i provided that component i is functioning. We
leave it as an exercise for the reader to verify the formula given for the bridge
structure function.

Let us suppose now that the states of the components—call them Si —
i = 1, . . . n, are independent random variables such that

P{Si = 1} = pi = 1 − P{Si = 0} i = 1, . . . , n

Let

r(p1, . . . , pn) = P{φ(S1, . . . , Sn) = 1}
= E[φ(S1, . . . , Sn)]

The function r(p1, . . . , pn) is called the reliability function. It represents the
probability that the system will work when the components are independent with
component i functioning with probability pi , i = 1, . . . , n.

158 9 Variance Reduction Techniques

For a series system

r(p1, . . . , pn) = P{Si = 1 for all i = 1, . . . , n}

=
n∏

i=1

P{Si = 1}

=
n∏

i=1

pi

and for a parallel system

r(p1, . . . , pn) = P{Si = 1 for at least one i, i = 1, . . . , n}

= 1 − P{Si = 0 for all i = 1, . . . , n}
= 1 −

n∏
i=1

P(Si = 0)

= 1 −
n∏

i=1

(1 − pi)

However, for most systems it remains a formidable problem to compute the
reliability function (even for such small systems as a 5-of-10 system or the bridge
system it can be quite tedious to compute). So let us suppose that for a given
nondecreasing structure function φ and given probabilities p1, . . . , pn , we are
interested in using simulation to estimate

r(p1, . . . , pn) = E[φ(S1, . . . , Sn)]

Now we can simulate the Si by generating uniform random numbers U1, . . . , Un

and then setting

Si =
{

1 if Ui < pi

0 otherwise

Hence we see that
φ(S1, . . . , Sm) = h(U1, . . . , Un)

where h is a decreasing function of U1, . . . , Un . Therefore

Cov(h(U), h(1 − U)) � 0

and so the antithetic variable approach of using U1, . . . , Un to generate both
h(U1, . . . , Un) and h(1 − U1, . . . , 1 − Un) results in a smaller variance than if
an independent set of random numbers were used to generate the second value
of h. �

9.1 The Use of Antithetic Variables 159

Oftentimes the relevant output of a simulation is a function of the input random
variables Y1, . . . , Ym . That is, the relevant output is X = h(Y1, . . . , Ym). Suppose
Yi has distribution Fi , i = 1, . . . , m. If these input variables are generated by the
inverse transform technique, we can write

X = h
(
F−1

1 (U1), . . . , F−1
m (Um)

)
where U1, . . . , Um are independent random numbers. Since a distribution
function is increasing, it follows that its inverse is also increasing and thus if
h(y1, . . . , ym) were a monotone function of its coordinates, then it follows that
h(F−1

1 (U1), . . . , F−1
m (Um)) will be a monotone function of the Ui . Hence the

method of antithetic variables, which would first generate U1, . . . , Um to compute
X1 and then use 1 − U1, . . . , 1 − Um to compute X2, would result in an estimator
having a smaller variance than would have been obtained if a new set of random
numbers were used for X2.

Example 9c Simulating a Queueing System Consider a given
queueing system, let Di denote the delay in queue of the ith arriving customer, and
suppose we are interested in simulating the system so as to estimate θ = E[X],
where

X = D1 + · · · + Dn

is the sum of the delays in queue of the first n arrivals. Let I1, . . . , In denote the
first n interarrival times (i.e., I j is the time between the arrivals of customers j − 1
and j), and let S1, . . . , Sn denote the first n service times of this system, and
suppose that these random variables are all independent. Now in many systems X
is a function of the 2n random variables I1, . . . , In, S1, . . . , Sn , say,

X = h(I1, . . . , In, S1, . . . , Sn)

Also, as the delay in queue of a given customer usually increases (depending of
course on the specifics of the model) as the service times of other customers increase
and usually decreases as the times between arrivals increase, it follows that, for
many models, h is a monotone function of its coordinates. Hence, if the inverse
transform method is used to generate the random variables I1, . . . , In, S1, . . . , Sn ,
then the antithetic variable approach results in a smaller variance. That is, if
we initially use the 2n random numbers Ui , i = 1, . . . , 2n, to generate the
interarrival and service times by setting Ii = F−1

i (Ui), Si = G−1
i (Un+i), where Fi

and Gi are, respectively, the distribution functions of Ii and Si , then the second
simulation run should be done in the same fashion, but using the random numbers
1 − Ui , i = 1, . . . , 2n. This results in a smaller variance than if a new set of 2n
random numbers were generated for the second run. �

The following example illustrates the sort of improvement that can sometimes
be gained by the use of antithetic variables.

160 9 Variance Reduction Techniques

Example 9d Suppose we were interested in using simulation to estimate

θ = E[eU] =
∫ 1

0
ex dx

(Of course, we know that θ = e − 1; however, the point of this example is to
see what kind of improvement is possible by using antithetic variables.) Since the
function h(u) = eu is clearly a monotone function, the antithetic variable approach
leads to a variance reduction, whose value we now determine. To begin, note that

Cov(eU , e1−U) = E[eU e1−U] − E[eU]E[e1−U]

= e − (e − 1)2 = −0.2342

Also, because

Var(eU) = E[e2U] − (E[eU])2

=
∫ 1

0
e2x dx − (e − 1)2

= e2 − 1

2
− (e − 1)2 = 0.2420

we see that the use of independent random numbers results in a variance of

Var

(
exp{U1} + exp{U2}

2

)
= Var(eU)

2
= 0.1210

whereas the use of the antithetic variables U and 1 − U gives a variance of

Var

(
eU + e1−U

2

)
= Var(eU)

2
+ Cov(eU , e1−U)

2
= 0.0039

a variance reduction of 96.7 percent. �

Example 9e Estimating e Consider a sequence of random numbers and
let N be the first one that is greater than its immediate predecessor. That is,

N = min(n : n � 2, Un > Un−1)

Now,

P{N > n} = P{U1 � U2 � · · · � Un}
= 1/n!

where the final equality follows because all possible orderings of U1, . . . , Un are
equally likely. Hence,

P{N = n} = P{N > n − 1} − P{N > n} = 1

(n − 1)! − 1

n! = n − 1

n!

9.1 The Use of Antithetic Variables 161

and so

E[N] =
∞∑

n=2

1

(n − 2)! = e

Also,

E[N 2] =
∞∑

n=2

n

(n − 2)! =
∞∑

n=2

2

(n − 2)! +
∞∑

n=2

n − 2

(n − 2)!

= 2e +
∞∑

n=3

1

(n − 3)! = 3e

and so
Var(N) = 3e − e2 ≈ 0.7658

Hence, e can be estimated by generating random numbers and stopping the first
time one exceeds its immediate predecessor.

If we employ antithetic variables, then we could also let

M = min(n : n � 2, 1 − Un > 1 − Un−1) = min(n : n � 2, Un < Un−1)

Since one of the values of N and M will equal 2 and the other will exceed 2, it would
seem, even though they are not monotone functions of the Un , that the estimator
(N + M)/2 should have a smaller variance than the average of two independent
random variables distributed according to N. Before determining Var(N + M), it
is useful to first consider the random variable Na , whose distribution is the same as
the conditional distribution of the number of additional random numbers that must
be observed until one is observed greater than its predecessor, given that U2 � U1.
Therefore, we may write

N = 2, with probability
1

2

N = 2 + Na, with probability
1

2
Hence,

E[N] = 2 + 1

2
E[Na]

E[N 2] = 1

2
4 + 1

2
E[(2 + Na)

2]

= 4 + 2E[Na] + 1

2
E
[
N 2

a

]
Using the previously obtained results for E[N] and Var(N) we obtain, after some
algebra, that

E[Na] = 2e − 4

E
[
N 2

a

] = 8 − 2e

162 9 Variance Reduction Techniques

implying that
Var(Na) = 14e − 4e2 − 8 ≈ 0.4997

Now consider the random variable N and M. It is easy to see that after the first
two random numbers are observed, one of N and M will equal 2 and the other will
equal 2 plus a random variable that has the same distribution as Na . Hence,

Var(N + M) = Var(4 + Na) = Var(Na)

Hence,
Var(N1 + N2)

Var(N + M)
≈ 1.5316

0.4997
≈ 3.065

Thus, the use of antithetic variables reduces the variance of the estimator by a
factor of slightly more than 3. �

In the case of a normal random variable having mean μ and variance σ 2, we
can use the antithetic variable approach by first generating such a random variable
Y and then taking as the antithetic variable 2μ − Y , which is also normal with
mean μ and variance σ 2 and is clearly negatively correlated with Y. If we were
using simulation to compute E[h(Y1, . . . , Yn)], where the Yi are independent
normal random variables with means μi , i = 1, . . . , n, and h is a monotone
function of its coordinates, then the antithetic approach of first generating the
n normals Y1, . . . , Yn to compute h(Y1, . . . , Yn) and then using the antithetic
variables 2μi − Yi , i = 1, . . . , n, to compute the next simulated value of h would
lead to a reduction in variance as compared with generating a second set of n
normal random variables.

9.2 The Use of Control Variates

Again suppose that we want to use simulation to estimate θ = E[X], where X
is the output of a simulation. Now suppose that for some other output variable Y,
the expected value of Y is known—say, E[Y] = μy . Then for any constant c, the
quantity

X + c(Y − μy)

is also an unbiased estimator of θ . To determine the best value of c, note that

Var(X + c(Y − μy)) = Var(X + cY)

= Var(X) + c2 Var(Y) + 2c Cov(X, Y)

Simple calculus now shows that the above is minimized when c = c∗, where

c∗ = −Cov(X, Y)

Var(Y)
(9.1)

9.2 The Use of Control Variates 163

and for this value the variance of the estimator is

Var(X + c∗(Y − μy)) = Var(X) − [Cov(X, Y)]2

Var(Y)
(9.2)

The quantity Y is called a control variate for the simulation estimator X. To see
why it works, note that c∗ is negative (positive) when X and Y are positively
(negatively) correlated. So suppose that X and Y were positively correlated,
meaning, roughly, that X is large when Y is large and vice versa. Hence, if a
simulation run results in a large (small) value of Y—which is indicated by Y being
larger (smaller) than its known mean μy—then it is probably true that X is also
larger (smaller) than its mean θ , and so we would like to correct for this by lowering
(raising) the value of the estimator X, and this is done since c∗ is negative (positive).
A similar argument holds when X and Y are negatively correlated.

Upon dividing Equation (9.2) by Var(X), we obtain that

Var(X + c∗(Y − μy))

Var(X)
= 1 − Corr2(X, Y)

where

Corr(X, Y) = Cov(X, Y)√
Var(X)Var(Y)

is the correlation between X and Y. Hence, the variance reduction obtained in using
the control variate Y is 100 Corr2(X, Y) percent.

The quantities Cov(X, Y) and Var(Y) are usually not known in advance and
must be estimated from the simulated data. If n simulation runs are performed, and
the output data Xi , Yi , i = 1, . . . , n, result, then using the estimators

̂Cov(X, Y) =
n∑

i=1

(Xi − X)(Yi − Y)/(n − 1)

and

V̂ar(Y) =
n∑

i=1

(Yi − Y)2/(n − 1),

we can approximate c∗ by ĉ∗, where

ĉ∗ = −
∑n

i=1(Xi − X)(Yi − Y)∑n
i=1(Yi − Y)2

.

The variance of the controlled estimator

Var(X + c∗(Y − μy)) = 1

n

(
Var(X) − Cov2(X, Y)

Var(Y)

)

can then be estimated by using the estimator of Cov(X, Y) along with the sample
variance estimators of Var(X) and Var(Y).

164 9 Variance Reduction Techniques

Remark Another way of doing the computations is to make use of a standard
computer package for simple linear regression models. For if we consider the
simple linear regression model

X = a + bY + e

where e is a random variable with mean 0 and variance σ 2, then â and b̂, the least
squares estimators of a and b based on the data Xi , Yi , i = 1, . . . , n, are

b̂ =
∑n

i=1(Xi − X)(Yi − Y)∑n
i=1(Yi − Y)2

â = X − b̂Y

Therefore, b̂ = −ĉ∗. In addition, since

X + ĉ∗(Y − μy) = X − b̂(Y − μy)

= â + b̂μy

it follows that the control variate estimate is the evaluation of the estimated
regression line at the value Y = μy . Also, because σ̂ 2, the regression estimate of
σ 2, is the estimate of Var(X − b̂Y) = Var(X + ĉ∗Y), it follows that the estimated
variance of the control variate estimator X + ĉ∗(Y − μy) is σ̂ 2/n. �

Example 9f Suppose, as in Example 9b, that we wanted to use simulation to
estimate the reliability function

r(p1, . . . , pn) = E[φ(S1, . . . , Sn)]

where

Si =
{

1 if Ui < pi

0 otherwise

Since E[Si] = pi , it follows that

E

[
n∑

i=1

Si

]
=

n∑
i=1

pi

Hence, we can use the number of working components, Y ≡ ∑
Si , as a control

variate of the estimator X ≡ φ(S1, . . . , Sn). Since
∑n

i=1 Si and φ(S1, . . . , Sn) are
both increasing functions of the Si , they are positively correlated, and thus the sign
of c∗ is negative. �

Example 9g Consider a queueing system in which customers arrive in
accordance with a nonhomogeneous Poisson process with intensity function
λ(s), s > 0. Suppose that the service times are independent random variables

9.2 The Use of Control Variates 165

having distribution G and are also independent of the arrival times. Suppose we
were interested in estimating the total time spent in the system by all customers
arriving before time t. That is, if we let Wi denote the amount of time that the
ith entering customer spends in the system, then we are interested in θ = E[X],
where

X =
N (t)∑
i=1

Wi

and where N (t) is the number of arrivals by time t. A natural quantity to use as a
control in this situation is the total of the service times of all these customers. That
is, let Si denote the service time of the ith customer and set

Y =
N (t)∑
i=1

Si

Since the service times are independent of N [t], it follows that

E[Y] = E[S]E[N (t)]

where E[S], the mean service time, and E[N (t)], the mean number of arrivals by
t, are both known quantities. �

Example 9h As in Example 9d, suppose we were interested in using simu-
lation to compute θ = E[eU]. Here, a natural variate to use as a control is the
random number U. To see what sort of improvement over the raw estimator is
possible, note that

Cov(eU , U) = E[UeU] − E[U]E[eU]

=
∫ 1

0
xex dx − (e − 1)

2

= 1 − (e − 1)

2
= 0.14086

Because Var(U) = 1
12 it follows from (9.2) that

Var

(
eU + c∗

(
U − 1

2

))
= Var(eU) − 12(0.14086)2

= 0.2420 − 0.2380 = 0.0039

where the above used, from Example 9d, that Var(eU) = 0.2420. Hence, in this
case, the use of the control variate U can lead to a variance reduction of up to 98.4
percent. �

166 9 Variance Reduction Techniques

Example 9i A List Recording Problem Suppose we are given a set
of n elements, numbered 1 through n, which are to be arranged in an ordered list.
At each unit of time a request is made to retrieve one of these elements, with
the request being for element i with probability p(i),

∑n
i=1 p(i) = 1. After being

requested, the element is put back in the list but not necessarily in the same position.
For example, a common reordering rule is to interchange the requested element
with the one immediately preceding it. Thus, if n = 4 and the present ordering is
1, 4, 2, 3, then under this rule a request for element 2 would result in the reorder
1, 2, 4, 3. Starting with an initial ordering that is equally likely to be any of the n!
orderings and using this interchange rule, suppose we are interested in determining
the expected sum of the positions of the first N elements requested. How can we
efficiently accomplish this by simulation?

One effective way is as follows. The “natural” way of simulating the above
is first to generate a random permutation of 1, 2, . . . , n to establish the initial
ordering, and then at each of the next N periods determine the element requested
by generating a random number U and then letting the request be for element j
if
∑ j−1

k=1 p(k) < U �
∑ j

k=1 p(k). However, a better technique is to generate the
element requested in such a way that small values of U correspond to elements close
to the front. Specifically, if the present ordering is i1, i2, . . . , in , then generate the
element requested by generating a random number U and then letting the selection
be for i j if

∑ j−1
k=1 p(ik) < U �

∑ j
k=1 p(ik). For example, if n = 4 and the present

ordering is 3, 1, 2, 4, then we should generate U and let the selection be for 3 if
U � p(3), let it be for 1 if p(3) < U � p(3) + p(1), and so on. As small values
of U thus correspond to elements near the front, we can use

∑N
r=1 Ur as a control

variable, where Ur is the random number used for the rth request in a run. That is,
if Pr is the position of the rth selected element in a run, then rather than just using
the raw estimator

∑N
r=1 Pr we should use

N∑
r=1

Pr + c∗
(

N∑
r=1

Ur − N

2

)

where

c∗ = −
Cov

(∑N
r=1 Pr ,

∑N
r=1 Ur

)
N
12

and where the above covariance should be estimated using the data from all the
simulated runs.

Although the variance reduction obtained will, of course, depend on the
probabilities p(i), i = 1, . . . , n, and the value of N, a small study indicates that
when n = 50 and the p(i) are approximately equal, then for 15 � N � 50
the variance of the controlled estimator is less than 1

2400 the variance of the raw
simulation estimator. �

9.2 The Use of Control Variates 167

Of course, one can use more than a single variable as a control. For example, if a
simulation results in output variables Yi , i = 1, . . . , k, and E[Yi] = μi is known,
then for any constants ci , i = 1, . . . , k, we may use

X +
k∑

i=1

ci (Yi − μi)

as an unbiased estimator of E[X].

Example 9j Blackjack The game of blackjack is often played with the
dealer shuffling multiple decks of cards, putting aside used cards, and finally
reshuffling when the number of remaining cards is below some limit. Let us say that
a new round begins each time the dealer reshuffles, and suppose we are interested
in using simulation to estimate E[X], a player’s expected winnings per round,
where we assume that the player is employing some fixed strategy which might
be of the type that “counts cards” that have already been played in the round and
stakes different amounts depending on the “count.” We will assume that the game
consists of a single player against the dealer.

The randomness in this game results from the shuffling of the cards by the dealer.
If the dealer uses k decks of 52 cards, then we can generate the shuffle by generating
a random permutation of the numbers 1 through 52k; let I1, . . . , I52k denote this
permutation. If we now set

u j = I j mod 13 + 1

and let
v j = min(u j , 10)

then v j , j = 1, . . . , 52k represents the successive values of the shuffled cards,
with 1 standing for an ace.

Let N denote the number of hands played in a round, and let Bj denote the
amount bet on hand j. To reduce the variance, we can use a control variable that is
large when the player is dealt more good hands than the dealer, and is small in the
reverse case. Since being dealt 19 or better is good, let us define

W j = 1 if the player’s two dealt cards on deal j add to atleast 19

and let W j be 0 otherwise. Similarly, let

Z j = 1 if the dealer’s two dealt cards on deal jadd to atleast 19

and let Z j be 0 otherwise. Since W j and Z j clearly have the same distribution it
follows that E[W j − Z j] = 0, and it is not difficult to show that

E

[
N∑

j=1

Bj (W j − Z j)

]
= 0

168 9 Variance Reduction Techniques

Thus, we recommend using
∑N

j=1 Bj (W j − Z j) as a control variable. Of course, it
is not clear that 19 is the best value, and one should experiment on letting 18 or even
20 be the critical value. However, some preliminary work indicates that 19 works
best, and it has resulted in variance reductions of 15 percent or more depending
on the strategy employed by the player. An even greater variance reduction should
result if we use two control variables. One control variable is defined as before,
with the exception that the W j and Z j are defined to be 1 if the hand is either 19
or 20. The second variable is again similar, but this time its indicators are 1 when
the hands consist of blackjacks. �

When multiple control variates are used, the computations can be performed by
using a computer program for the multiple linear regression model

X = a +
k∑

i=1

bi Yi + e

where e is a random variable with mean 0 and variance σ 2. Letting ĉ∗
i be the

estimate of the best ci , for i = 1, . . . , k, then

ĉ∗
i = −b̂i , i = 1, . . . , k

where b̂i , i = 1, . . . , k, are the least squares regression estimates of bi , i =
1, . . . , k. The value of the controlled estimate can be obtained from

X +
k∑

i=1

ĉ∗
i (Y i − μi) = â +

k∑
i=1

b̂iμi

That is, the controlled estimate is just the estimated multiple regression line
evaluated at the point (μ1, . . . , μk).

The variance of the controlled estimate can be obtained by dividing the
regression of σ 2 by the number of simulation runs.

Remarks

1. Since the variance of the controlled estimator is not known in advance, one
often performs the simulation in two stages. In the first stage a small number
of runs are performed so as to give a rough estimate of Var(X +c∗(Y −μy)).
(This estimate can be obtained from a simple linear regression program,
where Y is the independent and X is the dependent variable, by using the
estimate of σ 2.) We can then fix the number of trials needed in the second
run so that the variance of the final estimator is within an acceptable bound.

2. A valuable way of interpreting the control variable approach is that it
combines estimators of θ . That is, suppose the values of X and W are both
determined by the simulation, and suppose E[X] = E[W] = θ . Then we
may consider any unbiased estimator of the form

αX + (1 − α)W

9.3 Variance Reduction by Conditioning 169

The best such estimator, which is obtained by choosing α to minimize the
variance, is given by letting α = α∗, where

α∗ = Var(W) − Cov(X, W)

Var(X) + Var(W) − 2 Cov(X, W)
(9.3)

Now if E[Y] = μy is known, we have the two unbiased estimators X and
X + Y − μy . The combined estimator can then be written as

(1 − c)X + c(X + Y − μy) = X + c(Y − μy)

To go the other way in the equivalence between control variates and
combining estimators, suppose that E[X] = E[W] = θ . Then if we use
X, controlling with the variable Y = X − W , which is known to have mean
0, we then obtain an estimator of the form

X + c(X − W) = (1 + c)X − cW

which is a combined estimator with α = 1 + c.
3. With the interpretation given in Remark 2, the antithetic variable approach

may be regarded as a special case of control variables. That is, if E[X] = θ ,
where X = h(U1, . . . , Un), then also E[W] = θ , where W = h(1 −
U1, . . . , 1 − Un). Hence, we can combine to get an estimator of the form
αX + (1 − α)W . Since Var(X) = Var(W), as X and W have the same
distribution, it follows from Equation (9.3) that the best value of α is α = 1

2 ,
and this is the antithetic variable estimator.

4. Remark 3 indicates why it is not usually possible to effectively combine
antithetic variables with a control variable. If a control variable Y has a
large positive (negative) correlation with h(U1, . . . , Un) then it probably
has a large negative (positive) correlation with h(1 − U1, . . . , 1 − Un).
Consequently, it is unlikely to have a large correlation with the antithetic

estimator h(U1,...,Un)+h(1−U1,...,1−Un)

2 . �

9.3 Variance Reduction by Conditioning

Recall the conditional variance formula proved in Section 2.10 of Chapter 2.

Var(X) = E[Var(X |Y)] + Var(E[X |Y])

Since both terms on the right are nonnegative, because a variance is always
nonnegative, we see that

Var(X) � Var(E[X |Y]) (9.4)

Now suppose we are interested in performing a simulation study so as to ascertain
the value of θ = E[X], where X is an output variable of a simulation run. Also,

170 9 Variance Reduction Techniques

suppose there is a second variable Y, such that E[X |Y] is known and takes on a
value that can be determined from the simulation run. Since

E[E[X |Y]] = E[X] = θ

it follows that E[X |Y] is also an unbiased estimator of θ ; thus, from (9.4) it follows
that as an estimator of θ, E[X |Y] is superior to the (raw) estimator X.

Remarks To understand why the conditional expectation estimator is superior
to the raw estimator, note first that we are performing the simulation to estimate the
unknown value of E[X]. We can now imagine that a simulation run proceeds in two
stages: First, we observe the simulated value of the random variable Y and then the
simulated value of X. However, if after observing Y we are now able to compute the
(conditional) expected value of X, then by using this value we obtain an estimate of
E[X], which eliminates the additional variance involved in simulating the actual
value of X. �

At this point one might consider further improvements by using an estimator of
the type αX + (1 − α) E[X |Y]. However, by Equation (9.3) the best estimator of
this type has α = α∗, where

α∗ = Var(E[X |Y]) − Cov(X, E[X |Y])

Var(X) + Var(E[X |Y]) − 2 Cov(X, E[X |Y])

We now show that α∗ = 0, showing that combining the estimators X and E[X |Y]
does not improve on just using E[X |Y].

First note that

Var(E[X |Y]) = E[(E[X |Y])2] − (E[E[X |Y]])2

= E[(E[X |Y])2] − (E[X])2 (9.5)

On the other hand,

Cov(X, E[X |Y]) = E[X E[X |Y]] − E[X]E[E[X |Y]]

= E[X E[X |Y]] − (E[X])2

= E[E[X E[X |Y]|Y]] − (E[X])2

(conditioning onY)

= E[E[X |Y]E[X |Y]] − (E[X])2

(since given Y, E[X |Y] is a constant)

= Var(E[X |Y]) [from (9.5)]

Thus, we see that no additional variance reduction is possible by combining the
estimators X and E[X |Y].

We now illustrate the use of “conditioning” by a series of examples.

9.3 Variance Reduction by Conditioning 171

Example 9k Let us reconsider our use of simulation to estimate π . In Example
3a of Chapter 3, we showed how we can estimate π by determining how often a
randomly chosen point in the square of area 4 centered around the origin falls
within the inscribed circle of radius 1. Specifically, if we let Vi = 2Ui − 1, where
Ui , i = 1, 2, are random numbers, and set

I =
{

1 if V 2
1 + V 2

2 � 1
0 otherwise

then, as noted in Example 3a, EI = /4.

The use of the average of successive values of I to estimate /4 can be improved
upon by using EIV1 rather than I. Now

E[I |V1 = v] = P
{

V 2
1 + V 2

2 � 1|V1 = v
}

= P
{
v2 + V 2

2 � 1|V1 = v
}

= P
{

V 2
2 � 1 − v2

}
by the independence of V1 and V2

= P{−(1 − v2)1/2 � V2 � (1 − v2)1/2}

=
∫ (1−v2)1/2

−(1−v2)1/2

(
1

2

)
dx since V2 is uniform over (−1, 1)

= (1 − v2)1/2

Hence,

E[I |V1] = (
1 − V 2

1

)1/2

and so the estimator (1 − V 2
1)1/2 also has mean π/4 and has a smaller variance

than I. Since

P(V 2
1 � x) = P(−√

x � V1 �
√

x) = √
x = P(U 2 � x)

it follows that V 2
1 and U 2 have the same distribution, and so we can simplify

somewhat by using the estimator (1 − U 2)1/2, where U is a random number.
The improvement in variance obtained by using the estimator (1 − U 2)1/2 over

the estimator I is easily determined.

Var [(1 − U 2)1/2] = E[1 − U 2] −
(π

4

)2

= 2

3
−
(π

4

)2 ≈ 0.0498

where the first equality used the identity Var(W) = E[W 2] − (E[W])2. On the
other hand, because I is a Bernoulli random variable having mean π/4, we have

172 9 Variance Reduction Techniques

Var(I) =
(π

4

) (
1 − π

4

)
≈ 0.1686

thus showing that conditioning results in a 70.44 percent reduction in variance. (In
addition, only one rather than two random numbers is needed for each simulation
run, although the computational cost of having to compute a square root must be
paid.)

Since the function (1 − u2)1/2 is clearly a monotone decreasing function of u in
the region 0 < u < 1, it follows that the estimator (1 − U 2)1/2 can be improved
upon by using antithetic variables. That is, the estimator

1

2
[(1 − U 2)1/2 + (1 − (1 − U)2)1/2]

has smaller variance than 1
2 [(1 − U 2

1)1/2 + (1 − U 2
2)1/2].

Another way of improving the estimator (1−U 2)1/2 is by using a control variable.
A natural control variable in this case is U 2 and, because E[U 2] = 1

3 , we could
use an estimator of the type

(1 − U 2)1/2 + c

(
U 2 − 1

3

)

The best c—namely, c∗ = −Cov [(1 − U 2)1/2, U 2)/Var(U 2)]—can be estimated
by using the simulation to estimate the covariance term. (We could also have tried
to use U as a control variable; it makes a difference because a correlation between
two random variables is only a measure of their “linear dependence” rather than
of their total dependence. But the use of U 2 leads to a greater improvement; see
Exercise 15.) �

Example 9l Suppose there are r types of coupons and that every new coupon
collected is, independently of those previously collected, type i with probability
pi ,

∑r
i=1 pi = 1. Assume that coupons are collected one at a time, and that we

continue to collect coupons until we have collected ni or more type i coupons, for
all i = 1, . . . , r. With N denoting the number of coupons needed, we are interested
in using simulation to estimate both E[N] and P(N > m).

To obtain efficient estimates, suppose that the times at which coupons are
collected constitute the event times of a Poisson process with rate λ = 1. That
is, an event of the Poisson process occurs whenever a new coupon is collected. Say
that the Poisson event is of type i if the coupon collected is of type i . If we let Ni (t)
denote the number of type i events by time t (that is, Ni (t) is the number of type i
coupons that have been collected by time t), then it follows from results on Poisson
random variables presented in Section 2.8 that the processes {Ni (t), t � 0} are, for
i = 1, . . . , r, independent Poisson processes with respective rates pi . Hence, if we
let Ti be the time until there have been ni type i coupons collected, then T1, . . . , Tr

are independent gamma random variables, with respective parameters (ni , pi). (It
is to gain this independence that we supposed that coupons were collected at times

9.3 Variance Reduction by Conditioning 173

distributed as a Poisson process. For suppose we had defined Mi as the number
of coupons one needs collect to obtain ni type i coupons. Then, whereas Mi

would have a negative binomial distribution with parameters (ni , pi), the random
variables M1, . . . , Mr would not be independent.)

To obtain estimates of E[N], generate the random variables T1, . . . , Tr and let
T = maxi Ti . Thus, T is the moment at which we have reached the goal of having
collected at least ni type i coupons for each i = 1, . . . , r. Now, at time Ti a total
of ni type i coupons would have been collected. Because the additional number of
type i coupons collected between times Ti and T would have a Poisson distribution
with mean pi (T − Ti), it follows that Ni (T), the total number of type i coupons
collected, is distributed as ni plus a Poisson random variable with mean pi (T −Ti).
As the Poisson arrival processes are independent, it follows upon using that the
sum of independent Poisson random variables is itself Poisson distributed that the
conditional distribution of N given the values T1, . . . , Tr is that of

∑
i ni plus a

Poisson random variable with mean
∑r

i=1 pi (T −Ti). Thus, with n = ∑r
i=1 ni and

T = (T1, . . . , Tr), we have that

E[N |T] = n +
r∑

i=1

pi (T − Ti)

= T + n −
r∑

i=1

pi Ti (9.6)

In addition, because T is the time of event N , it follows that

T =
N∑

i=1

Xi

where X1, X2, . . .are the interarrival times of the Poisson process, and are thus
independent exponentials with mean 1. Because N is independent of the Xi the
preceding identity gives that

E[T] = E[E[T |N]] = E[N E[Xi]] = E[N]

Hence, T is also an unbiased estimator of E[N], suggesting a weighted average
estimator:

αE[N |T] + (1 − α)T = T + α(n −
r∑

i=1

pi Ti)

Because E
[∑r

i=1 pi Ti

] = n, this is equivalent to estimating E[N] by using the
unbiased estimator T along with the control variable

∑r
i=1 pi Ti . That is, it is

equivalent to using an estimator of the form

T + c (

r∑
i=1

pi Ti − n)

174 9 Variance Reduction Techniques

with the value of c that minimizes the variance of the preceding, namely c =
−Cov(T,

∑r
i=1 pi Ti)

Var(
∑r

i=1 pi Ti)
, being estimated from the simulation data.

To estimate P(N > m), again use that conditional on T, N is distributed as
n + X where X is Poisson with mean λ(T) ≡ ∑r

i=1 pi (T − Ti). This yields that

P(N > m|T) = P(X > m − n) = 1 −
m−n∑
i=0

e−λ(T)(λ(T))i/ i!, m � n

The preceding conditional probability P(N > m|T)should be used as the estimator
of P(N > m). �

In our next example we use the conditional expectation approach to efficiently
estimate the probability that a compound random variable exceeds some fixed
value.

Example 9m Let X1, X2, . . . be a sequence of independent and identically
distributed positive random variables that are independent of the nonnegative
integer valued random variable N. The random variable

S =
N∑

i=1

Xi

is said to be a compound random variable. In an insurance application, Xi could
represent the amount of the i th claim made to an insurance company, and N could
represent the number of claims made by some specified time t; S would be the
total claim amount made by time t. In such applications, N is often assumed to be
either a Poisson random variable (in which case S is called a compound Poisson
random variable) or a mixed Poisson random variable, where we say that N is a
mixed Poisson random variable if there is another random variable �, such that
the conditional distribution of N, given that � = λ, is Poisson with mean λ. For
instance, if � has a probability density function g(λ), then the probability mass
function of the mixed Poisson random variable N is

P{N = n} =
∫ ∞

0

e−λλn

n! g(λ) dλ

Mixed Poisson random variables arise when there is a randomly determined
“environmental state” that determines the mean of the (Poisson) number of events
that occur in the time period of interest. The distribution function of � is called
the mixing distribution.

Suppose that we want to use simulation to estimate

p = P

{
N∑

i=1

Xi > c

}

9.3 Variance Reduction by Conditioning 175

for some specified positive constant c. The raw simulation approach would first
generate the value of N, say N = n, then generate the values of X1, . . . , Xn and
use them to determine the value of the raw simulation estimator

I =
{

1, if
∑N

i=1 Xi > c
0, otherwise

The average value of I over many such runs would then be the estimator of p.
We can improve upon the preceding by a conditional expectation approach that

starts by generating the values of the Xi in sequence, stopping when the sum of
the generated values exceeds c. Let M denote the number that is needed; that is,

M = min

(
n :

n∑
i=1

Xi > c

)

If the generated value of M is m, then we use P{N � m} as the estimate of p from
this run. To see that this results in an estimator having a smaller variance than does
the raw simulation estimator I, note that because the Xi are positive

I = 1 ⇐⇒ N � M

Hence,
E[I |M] = P{N � M|M}

Now,
P{N � M|M = m} = P{N � m|M = m} = P{N � m}

where the final equality used the independence of N and M. Consequently, if the
value of M obtained from the simulation is M = m, then the value E[I |M] obtained
is P{N � m}.

The preceding conditional expectation estimator can be further improved by
using a control variable. Let μ = E[Xi], and define

Y =
M∑

i=1

(Xi − μ)

It can be shown that E[Y] = 0. To intuitively see why Y and the conditional
expectation estimator P{N � M|M} are strongly correlated, note first that the
conditional expectation estimator will be small when M is large. But, because M is
the number of the Xi that needs to be summed to exceed c, it follows that M will be
large when the Xi are small, which would make Y small. That is, both E[I |M] and
Y tend to be small at the same time. A similar argument shows that if E[I |M] is
large then Y also tends to be large. Thus, it is clear that E[I |M] and Y are strongly
positively correlated, indicating that Y should be an effective control variable. �

176 9 Variance Reduction Techniques

Even though E[Xi − μ] = 0 in Example 9m, because the number of terms
in the sum

∑M
i=1(Xi − μ) is random rather than fixed, it is not immediate that

E[
∑M

i=1(Xi − μ)] = 0. That it is zero is a consequence of a result known as
Wald’s equation. To state this result we first need the concept of a stopping time
for a sequence of random variables,

Definition: The nonnegative integer valued random variable N is said to be a
stopping time for the sequence of random variables X1, X2, . . . if the event that
{N = n} is determined by the values of X1, . . . , Xn.

The idea behind a stopping time is that the random variables X1, X2, . . . are
observed in sequence and at some point, depending on the values so far observed
but not on future values, we stop. We now have

Wald’s Equation: If N is a stopping time for a sequence of independent and
identically distributed random variables X1, X2, . . . with finite mean E[X] then

E

[
N∑

n=1

Xn

]
= E[N]E[X]

provided that E[N] < ∞.

Example 9n A Finite Capacity Queueing Model Consider a
queueing system in which arrivals enter only if there are fewer than N other
customers in the system when they arrive. Any customer encountering N others
upon arrival is deemed to be lost to the system. Suppose further that potential
customers arrive in accordance with a Poisson process having rate λ; and suppose
we are interested in using simulation to estimate the expected number of lost
customers by some fixed time t.

A simulation run would consist of simulating the above system up to time t. If,
for a given run, we let L denote the number of lost customers, then the average
value of L, over all simulation runs, is the (raw) simulation estimator of the desired
quantity E[L]. However, we can improve upon this estimator by conditioning upon
the amount of time that the system is at capacity. That is, rather than using L, the
actual number of lost customers up to time t, we consider E[L|TC], where TC is
the total amount of time in the interval (0, t) that there are N customers in the
system. Since customers are always arriving at the Poisson rate λ no matter what
is happening within the system, it follows that

E[L|TC] = λTC

Hence an improved estimator is obtained by ascertaining, for each run, the total
time in which there are N customers in the system—say, TC,i is the time at capacity
during the ith run. Then the improved estimator of E[L] is λ

∑k
i=1 TC,i/k, where

k is the number of simulation runs. (In effect, since the expected number of lost
customers given the time at capacity TC is just λTC , what this estimator does is

9.3 Variance Reduction by Conditioning 177

use the actual conditional expectation rather than simulating—and increasing the
variance of the estimator—a Poisson random variable having this mean.)

If the arrival process were a nonhomogeneous Poisson process having intensity
function λ(s), 0 � s � t , then we would not be able to compute the conditional
expected number of lost customers if we were given only the total time at capacity.
What we now need is the actual times at which the system was at capacity. So
let us condition on the intervals during which the system was at capacity. Now
letting NC denote the number of intervals during (0, t) during which the system is
at capacity, and letting those intervals be designated by I1, . . . , INC , then

E[L|NC , I1, . . . , INC] =
NC∑
i=1

∫
Ii

λ(s) ds

The use of the average value, over all simulation runs, of the above quantity leads
to a better estimator—in the sense of having a smaller mean square error—of E[L]
than the raw simulation estimator of the average number lost per run.

One can combine the preceding with other variance reduction techniques in
estimating E[L]. For instance, if we let M denote the number of customers that
actually enter the system by time t, then with N (t) equal to the number of arrivals
by time t we have that

N (t) = M + L

Taking expectations gives that∫ t

0
λ(s) ds = E[M] + E[L]

Therefore,
∫ t

0 λ(s) ds − M is also an unbiased estimator of E[L], which suggests
the use of the combined estimator

α

NC∑
i=1

∫
Ii

λ(s) ds + (1 − α)

(∫ t

0
λ(s) ds − M

)

The value of α to be used is given by Equation (9.3) and can be estimated from
the simulation. �

Example 9o Suppose we wanted to estimate the expected sum of the times
in the system of the first n customers in a queueing system. That is, if Wi is the
time that the ith customer spends in the system, we are interested in estimating

θ = E

[
n∑

i=1

Wi

]

Let Si denote the “state of the system” at the moment that the ith customer arrives,
and consider the estimator

n∑
i=1

E[Wi |Si]

178 9 Variance Reduction Techniques

Since

E

[
n∑

i=1

E[Wi |Si]

]
=

n∑
i=1

E[E[Wi |Si]] =
n∑

i=1

E[Wi] = θ

it follows that this is an unbiased estimator of θ . It can be shown1 that, in a wide
class of models, this estimator has a smaller variance than the raw simulation
estimator

∑n
i=1 Wi . (It should be noted that whereas it is immediate that E[Wi |Si]

has smaller variance than Wi , this does not imply, because of the covariance terms,
that

∑n
i=1 E[Wi |Si] has smaller variance than

∑n
i=1 Wi .)

The quantity Si , which refers to the state of the system as seen by the ith customer
upon its arrival, is supposed to represent the least amount of information that
enables us to compute the conditional expected time that the customer spends in
the system. For example, if there is a single server and the service times are all
exponential with mean μ, then Si would refer to Ni , the number of customers in
the system encountered by the ith arrival. In this case,

E[Wi |Si] = E[Wi |Ni] = (Ni + 1)μ

which follows because the ith arrival will have to wait for Ni service times (one
of which is the completion of service of the customer presently being served
when customer i arrives—but, by the memoryless property of the exponential, that
remaining time will also be exponential with mean μ) all having mean μ, and then
to this we must add its own service time. Thus, the estimator that takes the average
value, over all simulation runs, of the quantity

∑n
i=1(Ni +1)μ is a better estimator

than the average value of
∑n

i=1 Wi . �

Our next example refers to the distribution of the number of nontarget cells that
are not accidentally killed before a set of target cells have been destroyed.

Example 9p Consider a set of n + m cells, with cell i having weight
wi , i = 1, . . . , n + m. Imagine that cells 1, . . . , n are cancerous and that cells
n + 1, . . . , n + m are normal, and suppose cells are killed one at a time in the
following fashion. If, at any time, S is the current set of cells that are still alive
then, independent of the order in which the cells that are not in S have been killed,
the next cell to be killed is cell i, i ∈ S, with probability wi∑

j∈S w j
. Therefore, with

probability wi∑n+m
j=1 w j

cell i is the first cell killed; given that cell i is the first cell

killed, the next cell killed will be cell k, k
= i , with probability wk∑
j
=i w j

, and so

on. This process of killing cells continues until all of the first n cells (the cancer
cells) have been killed. Let N denote the number of the normal cells that are still
alive at the time when all the cancer cells have been killed. We are interested in
determining P{N � k}.

1 S. M. Ross, “Simulating Average Delay—Variance Reduction by Conditioning,” Probability Eng.
Informational Sci. 2(3), 1988.

9.3 Variance Reduction by Conditioning 179

Before attempting to develop an efficient simulation procedure, let us consider
a related model in which cell i, i = 1, . . . , n + m, is killed at the random time Ti ,
where T1, . . . , Tn+m are independent exponential random variables with respective
rates w1, . . . , wn+m . By the lack of memory property of exponential random
variables, it follows that if S is the set of cells that are currently alive then, as
in the original model, cell i, i ∈ S, will be the next cell killed with probability

wi∑
j∈S w j

, showing that the order in which cells are killed in this related model has

the same probability distribution as it does in the original model. Let N represent
the number of cells that are still alive when all cells 1, . . . , n have been killed.
Now, if we let T (k) be the kth largest of the values Tn+1, . . . , Tn+m , then T (k) is the
first time at which there are fewer than k normal cells alive. Thus, in order for N
to be at least k, all the cancer cells must have been killed by time T (k). That is,

P{N � k} = P {Max
i�n

Ti < T (k)}

Therefore,

P{N � k|T (k)} = {P Max
i�n

Ti < T (k)|T (k)}

=
n∏

i=1

(1 − e−wi T (k)
)

where the final equality used the independence of the Ti . Hence, we obtain an
unbiased, conditional expectation estimator of P{N � k} by generating the m
exponential random variables Tm+1, . . . , Tn+m . Then letting T (k) be the kth largest
of these values gives the estimator

∏n
i=1(1 − e−wi T (k)

). Because this estimator is
an increasing function of the generated Tn+1, . . . , Tn+m , further variance reduction
is possible provided the Ti are obtained from the inverse transform method. For
then the estimator will be an increasing function of the m random numbers used,
indicating that antithetic variables will lead to further variance reduction. Putting
it all together, the following gives a single run of the algorithm for estimating
P{N � k}.
step 1: Generate random numbers U1, . . . , Um .
step 2: Let T (k) be the kth largest of the m values − 1

wn+i
log(Ui), i = 1, . . . , m.

step 3: Let S(k) be the kth largest of the m values − 1
wn+i

log(1−Ui), i = 1, . . . , m.

step 4: The estimator from this run is

1

2

[
n∏

i=1

(1 − e−wi T (k)
) +

n∏
i=1

(1 − e−wi S(k)
)

]

180 9 Variance Reduction Techniques

Estimating the Expected Number of Renewals by Time t

Suppose that “events” are occurring randomly in time. Let T1 denote the time of
the first event, T2 the time between the first and second event, and, in general, Ti

the time between the (i − 1)th and the ith event, i � 1. If we let

Sn =
n∑

i=1

Ti

the first event occurs at time S1, the second at time S2, and, in general, the nth event
occurs at time Sn (see Figure 9.2). Let N (t) denote the number of events that occur
by time t; that is, N (t) is the largest n for which the nth event occurs by time t, or,
equivalently,

N (t) = Max{n : Sn � t}
If the interevent times T1, T2 . . . are independent and identically distributed
according to some distribution function F, then the process {N (t), t � 0} is called
a renewal process.

A renewal process is easily simulated by generating the interarrival times.
Suppose now that we wanted to use simulation to estimate θ = E[N (t)], the mean
number of events by some fixed time t. To do so we would successively simulate
the interevent times, keeping track of their sum (which represent the times at which
events occur) until that sum exceeds t. That is, we keep on generating interevent
times until we reach the first event time after t. Letting N (t)—the raw simulation
estimator—denote the number of simulated events by time t, we find that a natural
quantity to use as a control variable is the sequence of N (t) + 1 interevent times
that were generated. That is, if we let μ denote the mean interevent time, then as
the random variables Ti − μ have mean 0 it follows from Wald’s equation that

E

[
N (t)+1∑

i=1

(Ti − μ)

]
= 0

Hence, we can control by using an estimator of the type

N (t) + c

[
N (t)+1∑

i=1

(Ti − μ)

]
= N (t) + c

[
N (t)+1∑

i=1

Ti − μ(N (t) + 1)

]

= N (t) + c[SN (t)+1 − μN (t) − μ]

T1

S10 S2

t
S3

T2 T3

Figure 9.2. x = event.

9.3 Variance Reduction by Conditioning 181

Now since Sn represents the time of the nth event and N (t) + 1 represents the
number of events by time t plus 1, it follows that SN (t)+1 represents the time of the
first event after time t. Hence, if we let Y (t) denote the time from t until the next
event [Y (t) is commonly called the excess life at t], then

SN (t)+1 = t + Y (t)

and so the above controlled estimator can be written as

N (t) + c[t + Y (t) − μN (t) − μ]

The best c is given by

c∗ = −Cov[N (t), Y (t) − μN (t)]

Var[Y (t) − μN (t)]

Now for t large, it can be shown that the terms involving N (t) dominate—because
their variance will grow linearly with t, whereas the other terms will remain
bounded—and so for t large

c∗ ≈ −Cov[N (t),−μN (t)]

Var[− μN (t)]
= μ Var[N (t)]

μ2 Var[N (t)]
= 1

μ

Thus, for t large, the best controlled estimator of the above type is close to

N (t) + 1

μ
(t + Y (t) − μN (t) − μ) = Y (t)

μ
+ t

μ
− 1 (9.7)

In other words, for t large, the critical value to be determined from the simulation
is Y (t), the time from t until the next renewal.

The above estimator can further be improved upon by the use of “conditioning.”
Namely, rather than using the actual observed time of the first event after t, we can
condition on A(t), the time at t since the last event (see Figure 9.3). The quantity
A(t) is often called the age of the renewal process at t. [If we imagine a system
consisting of a single item that functions for a random time having distribution F
and then fails and is immediately replaced by a new item, then we have a renewal
process with each event corresponding to the failure of an item. The variable A(t)
would then refer to the age of the item in use at time t, where by age we mean the
amount of time it has already been in use.]

Now if the age of the process at time t is x, the expected remaining life of the
item is just the expected amount by which an interevent time exceeds x given that
it is greater than x. That is,

E[Y (t)|A(t) = x] = E[T − x |T > x]

=
∫ ∞

x
(y − x)

f (y) dy

1 − F(x)

≡ μ[x]

182 9 Variance Reduction Techniques

A(t)

Last renewal
before t

t

Figure 9.3. Age at t.

where the above supposes that F is a continuous distribution with density function
f. Hence, with μ[x] defined as above to equal E[T − x |T > x], we see that

E[Y (t)|A(t)] = μ[A(t)]

Thus, for large t, a better estimator of E[N (t)] than the one given in Equation (9.7)
is

μ[A(t)]

μ
+ t

μ
− 1 (9.8)

9.4 Stratified Sampling

Suppose we want to estimate θ = E[X], and suppose there is some discrete random
variable Y, with possible values y1, . . . , yk , such that

(a) the probabilities pi = P{Y = yi }, i = 1, . . . , k, are known; and
(b) for each i = 1, . . . , k, we can simulate the value of X conditional on Y = yi .

Now if we are planning to estimate E[X] by n simulation runs, then the usual
approach would be to generate n independent replications of the random variable
X and then use X̄ , their average, as the estimate of E[X]. The variance of this
estimator is

Var(X̄) = 1

n
Var(X)

However, writing

E[X] =
k∑

i=1

E[X |Y = yi]pi

we see that another way of estimating E[X] is by estimating the k quantities
E[X |Y = yi], i = 1, . . . , k. For instance, suppose rather than generating n
independent replications of X, we do npi of the simulations conditional on the
event that Y = yi for each i = 1, . . . , k. If we let X̄i be the average of the npi

observed values of X generated conditional on Y = yi , then we would have the
unbiased estimator

E =
k∑

i=1

X̄i pi

The estimator E is called a stratified sampling estimator of E[X].

9.4 Stratified Sampling 183

Because X̄i is the average of npi independent random variables whose
distribution is the same as the conditional distribution of X given that Y = yi ,
it follows that

Var(X̄i) = Var(X |Y = yi)

npi

Consequently, using the preceding and that the X̄i , i = 1, . . . , k, are independent,
we see that

Var(E) =
k∑

i=1

p2
i Var(X̄i)

= 1

n

k∑
i=1

pi Var(X |Y = yi)

= 1

n
E[Var(X |Y)]

Because Var(X̄) = 1
n Var(X), whereas Var(E) = 1

n E[Var(X |Y)], we see from the
conditional variance formula

Var(X) = E[Var(X |Y)] + Var(E[X |Y])

that the variance savings in using the stratified sampling estimator E over the usual
raw simulation estimator is

Var(X̄) − Var(E) = 1

n
Var(E[X |Y])

That is, the variance savings per run is Var(E[X |Y]) which can be substantial when
the value of Y strongly affects the conditional expectation of X.

Remark The variance of the stratified sampling estimator can be estimated
by letting S2

i be the sample variance of the npi runs done conditional on Y =
yi , i = 1, . . . , k. Then S2

i is an unbiased estimator of Var(X |Y = yi), yielding that
1
n

∑k
i=1 pi S2

i is an unbiased estimator of Var(E). �

Example 9q On good days customers arrive at an infinite server queue
according to a Poission process with rate 12 per hour, whereas on other days
they arrive according to a Poisson process with rate 4 per hour. The service times,
on all days, are exponentially distributed with rate 1 per hour. Every day at time 10
hours the system is shut down and all those presently in service are forced to leave
without completing service. Suppose that each day is, independently, a good day
with probability 0.5 and that we want to use simulation to estimate θ , the mean
number of customers per day that do not have their services completed.

184 9 Variance Reduction Techniques

Let X denote the number of customers whose service is not completed on a
randomly selected day; let Y equal 0 if the day is ordinary, and let it equal 1 if the
day is good. Then it can be shown that the conditional distributions of X given that
Y = 0 and that Y = 1 are, respectively, both Poisson with respective means

E[X |Y = 0] = 4(1 − e−10), E[X |Y = 1] = 12(1 − e−10)

Because the variance of a Poisson random variable is equal to its mean, the
preceding shows that

Var(X |Y = 0) = E[X |Y = 0] ≈ 4

Var(X |Y = 1) = E[X |Y = 1] ≈ 12

Thus,

E[Var(X |Y)] ≈ 1

2
(4 + 12) = 8

and

Var(E[X |Y]) = E[(E[X |Y])2] − (E[X])2 ≈ 42 + (12)2

2
− 82 = 16

Consequently,
Var(X) ≈ 8 + 16 = 24

which is about 3 times as large as E[Var(X |Y)], the variance of the stratified
sampling estimator that simulates exactly half the days as good days and the other
half as ordinary days. �

Again suppose that the probability mass function pi = P{Y = yi }, i = 1, . . . , k
is known, that we can simulate X conditional on Y = i , and that we plan to
do n simulation runs. Although performing npi of the n runs conditional on
Y = yi , i = 1, . . . , k, (the so-called proportional stratified sampling strategy)
is better than generating n independent replications of X, these are not necessarily
the optimal numbers of conditional runs to perform. Suppose we plan to do ni runs
conditional on Y = yi , where n = ∑k

i=1 ni . Then, with X̄i equal to the average of
the ni runs conditional on Y = yi , the stratified sampling estimator is

θ̂ =
k∑

i=1

pi X̄i

with its variance given by

Var(θ̂) =
k∑

i=1

p2
i Var(X |Y = i)/ni

9.4 Stratified Sampling 185

Whereas the quantities Var(X |Y = i), i = 1, . . . , k, will be initially unknown,
we could perform a small simulation study to estimate them—say we use the
estimators s2

i . We could then choose the ni by solving the following optimization
problem:

choose n1, . . . , nk

such that
k∑

i=1

ni = n

to minimize
k∑

i=1

p2
i s2

i /ni

Using Lagrange multipliers, it is easy to show that the optimal values of the ni in
the preceding optimization problem are

ni = n
pi si∑k

j=1 p j s j

, i = 1, . . . , k

Once the ni are determined and the simulations performed, we would estimate
E[X] by

∑k
i=1 pi X̄i , and we would estimate the variance of this estimator by∑k

i=1 p2
i S2

i /ni , where S2
i is the sample variance of the ni runs done conditional on

Y = yi , i = 1, . . . , k.
For another illustration of stratified sampling, suppose that we want to use n

simulation runs to estimate

θ = E[h(U)] =
∫ 1

0
h(x) dx

If we let

S = j if
j − 1

n
� U <

j

n
, j = 1, . . . , n

then

θ = 1

n

n∑
j=1

E[h(U)|S = j]

= 1

n

n∑
j=1

E[h(U(j))]

where U(j) is uniform on ((j − 1)/n, j/n). Hence, by the preceding, it follows
that rather than generating U1, . . . , Un and then using

∑n
j=1 h(U j)/n to estimate

θ , a better estimator is obtained by using

θ̂ = 1

n

n∑
j=1

h

(
U j + j − 1

n

)

186 9 Variance Reduction Techniques

Example 9r In Example 9k we showed that

π

4
= E

[√
(1 − U 2)

]
Hence, we can estimate π by generating U1, . . . , Un and using the estimator

est = 4

n

n∑
j=1

√
1 − [(U j + j − 1)/n]2

In fact, we can improve the preceding by making use of antithetic variables to
obtain the estimator

π̂ = 2

n

n∑
j=1

(√
1 − [(U j + j − 1)/n]2 +

√
1 − [(j − U j)/n]2

)

A simulation using the estimator π̂ yielded the following results:

n π̂

5 3.161211

10 3.148751

100 3.141734

500 3.141615

1000 3.141601

5000 3.141593

When n = 5000, the estimator π̂ is correct to six decimal places. �

Remarks

1. Suppose we want to use simulation to estimate E[X] by stratifying on the
values of Y, a continuous random variable having distribution function G.
To perform the stratification, we would first generate the value of Y and then
simulate X conditional on this value of Y. Say we use the inverse transform
method to generate Y; that is, we obtain Y by generating a random number
U and setting Y = G−1(U). If we plan to do n simulation runs, then rather
than using n independent random numbers to generate the successive values
of Y, one could stratify by letting the i th random number be the value of a
random variable that is uniform in the region

(
i−1

n , i
n

)
. In this manner we

obtain the value of Y in run i—call it Yi —by generating a random number

Ui and setting Yi = G−1
(

Ui +i−1
n

)
. We would then obtain Xi , the value of

X in run i, by simulating X conditional on Y equal to the observed value
of Yi . The random variable Xi would then be an unbiased estimator of

9.4 Stratified Sampling 187

E[X |G−1(i−1
n) < Y � G−1(i

n)], yielding that 1
n

∑n
i=1 Xi is an unbiased

estimator of

1

n

n∑
i=1

E

[
X |G−1

(
i − 1

n

)
< Y � G−1

(
i

n

)]

=
n∑

i=1

E

[
X | i − 1

n
< G(Y) � i

n

]
1

n

=
n∑

i=1

E

[
X | i − 1

n
< G(Y) � i

n

]
P

{
i − 1

n
< G(Y) � i

n

}

= E[X]

where the penultimate equation used that G(Y) is uniform on (0, 1).
2. Suppose that we have simulated n independent replications of X without

doing any stratification, and that in ni of the simulation runs, the resulting
value of Y was yi ,

∑k
i=1 ni = n. If we let X̄i denote the average of the ni

runs in which Y = yi , then X̄ , the average value of X over all n runs, can be
written as

X̄ = 1

n

n∑
i=1

Xi

= 1

n

k∑
i=1

ni X̄i

=
k∑

i=1

ni

n
X̄i

When written this way, it is clear that using X̄ to estimate E[X] is equivalent
to estimating E[X |Y = i] by X̄i and estimating pi by ni/n for each
i = 1, . . . , k. But since the pi are known, and so need not be estimated,
it would seem that a better estimator of E[X] than X̄ would be the estimator∑k

i=1 pi X̄i . In other words, we should act as if we had decided in advance to
do stratified sampling, with ni of our simulation runs to be done conditional
on Y = yi , i = 1, . . . , k. This method of stratifying after the fact is called
poststratification. �

At this point one might question how stratifying on the random variable Y compares
with using Y as a control variable. The answer is that stratifying always results in
an estimator having a smaller variance than is obtained by the estimator that uses
Y as a control variable Because, from (9.9) and (9.2), the variance of the stratified
estimator based on n runs is 1

n E[Var(X |Y)], whereas the variance from n runs of

188 9 Variance Reduction Techniques

using Y as a control variable is 1
n

(
Var(X) − Cov2(X,Y)

Var(Y)

)
, that this answer is true is

shown by the following proposition.

Proposition

E[Var(X |Y)] � Var(X) − Cov2(X, Y)

Var(Y)

To prove the following proposition we will first need a lemma..

Lemma
Cov(X, Y) = Cov(E[X |Y], Y)

Proof

Cov(X, Y) = E[XY] − E[X] E[Y]

= E [E[XY |Y]] − E [E[X |Y]] E[Y]

= E [Y E[X |Y]] − E [E[X |Y]] E[Y]

= Cov(E[X |Y], Y)

where the preceding used that E[XY |Y] = Y E[X |Y], which follows because
conditional on Y the random variable Y can be treated as a constant. �

Proof of Proposition: By the conditional variance formula

E[Var(X |Y)] = Var(X) − Var(E[X |Y])

Hence, we must show that

Var(E[X |Y]) � Cov2(X, Y)

Var(Y)

which, by the Lemma, is equivalent to showing that

1 � Cov2(E[X |Y], Y)

Var(Y)Var(E[X |Y])

The result now follows because the right side of the preceding is
Corr2(E[X |Y], Y), and the square of a correlation is always less than or equal
to 1. �

Suppose again that we are interested in estimating θ = E[X], where X is
dependent on the random variable S, which takes on one of the values 1, 2, . . . k
with respective probabilities pi , i = 1, . . . , k. Then

E[X] = p1 E[X |S = 1] + p2 E[X |S = 2] + · · · + pk E[X |S = k]

9.4 Stratified Sampling 189

If all of the quantities E[X |S = i] are known (that is, if E[X |S] is known), but the
pi are not, then we can estimate θ by generating the value of S and then using the
conditional expectation estimator E[X |S]. On the other hand, if it is the pi that are
known and we can generate from the conditional distribution of X given the value
of S, then we can use simulation to obtain estimators Ê[X |S = i] of the quantities
E[X |S = i] and then use the stratified sampling estimator

∑k
i=1 pi Ê[X |S = i] to

estimate E[X]. When some of the pi and some of the E[X |S = i] are known, we
can use a combination of these approaches.

Example 9s In the game of video poker a player inserts one dollar into a
machine, which then deals the player a random hand of five cards. The player is
then allowed to discard certain of these cards, with the discarded cards replaced
by new ones from the remaining 47 cards. The player is then returned a certain
amount depending on the makeup of her or his final cards. The following is a
typical payoff scheme:

Hand Payoff

Royal flush 800

Straight flush 50

Four of a kind 25

Full house 8

Flush 5

Straight 4

Three of a kind 3

Two pair 2

High pair (jacks or better) 1

Anything else 0

In the preceding, a hand is characterized as being in a certain category if it is of
that type and not of any higher type. That is, for instance, by a flush we mean five
cards of the same suit that are not consecutive.

Consider a strategy that never takes any additional cards (that is, the player
stands pat) if the original cards constitute a straight or higher, and that always
retains whatever pairs or triplets it is dealt. For a given strategy of this type let
X denote the player’s winnings on a single hand, and suppose we are interested
in estimating θ = E[X]. Rather than just using X as the estimator, let us start by
conditioning on the type of hand that is initially dealt to the player. Let R represent
a royal flush, S represent a straight flush, 4 represent four of a kind, 3 represent
three of a kind, 2 represent two pair, 1 represent a high pair, 0 represent a low pair,

190 9 Variance Reduction Techniques

and “other” represent all other hands not mentioned. We then have

E[X] = E[X |R]P{R} + E[X |S]P{S} + E[X |4]P{4} + E[X |full]P{full}
+E[X |flush]P{flush} + E[X |straight]P{straight} + E[X |3]P{3}
+E[X |2]P{2} + E[X |1]P{1} + E[X |0]P{0} + E[X |other]P{other}

Now, with C =
(

52
5

)−1

, we have

P{R} = 4C = 1.539 × 10−6

P{S} = 4 · 9 · C = 1.3851 × 10−4

P{4} = 13 · 48 · C = 2.40096 × 10−4

P{full} = 13 · 12

(
4
3

)−1 (
4
2

)−1

C = 1.440576 × 10−3

P{flush} = 4

⎛
⎝
(

13
5

)−1

− 10

⎞
⎠C = 1.965402 × 10−3

P{straight} = 10(45 − 4)C = 3.924647 × 10−3

P{3} = 13

(
12
2

)−1

43C = 2.1128451 × 10−2

P{2} =
(

13
2

)−1

44

(
4
2

)−1(
4
2

)−1

C = 4.7539016 × 10−2

P{1} = 4

(
4
2

)−1(
12
3

)−1

43C = 0.130021239

P{0} = 9

(
4
2

)−1(
12
3

)−1

43C = 0.292547788

P{other} = 1 − P{R} − P{S} − P{full} − P{flush}

−P{straight} −
4∑

i=0

P{i} = 0.5010527

Therefore, we see that

E[X] = 0.0512903 +
3∑

i=0

E[X |i]P{i} + E[X |other] 0.5010527

Now, E[X |3] can be analytically computed by noting that the 2 new cards will come
from a subdeck of 47 cards that contains 1 card of one denomination (namely the

9.4 Stratified Sampling 191

denomination to which your three of a kind belong), 3 cards of two denominations,
and 4 cards of the other 10 denominations. Thus, letting F be the final hand, we
have that

P{F = 4|dealt 3} = 46(
47
2

) = 0.042553191

P{F = full|dealt 3} = 2 · 3 + 10 · 6(
47
2

) = 0.061054579

P{F = 3|dealt 3} = 1 − 0.042553191 − 0.061054579 = 0.89639223

Hence,

E[X |3] = 25(0.042553191) + 8(0.061054579) + 3(0.89639223)

= 4.241443097

Similarly, we can analytically derive (and the derivation is left as an exercise)
E[X |i] for i = 0, 1, 2.

In running the simulation, we should thus generate a hand. If it contains at least
one pair or a higher hand then it should be discarded and the process begun again.
When we are dealt a hand that does not contain a pair (or any higher hand), we
should use whatever strategy we are employing to discard and receive new cards.
If Xo is the payoff on this hand, then Xo is the estimator of E[X |other], and the
estimator of θ = E[X] based on this single run is

θ̂ = 0.0512903 + 0.021128451(4.241443097) + 0.047539016E[X |2]

+ 0.130021239E[X |1] + 0.292547788E[X |0] + 0.5010527Xo

Note that the variance of the estimator is

Var(θ̂) = (0.5010527)2Var(Xo) �

Remarks

1. We have supposed that the strategy employed always sticks with a pat hand
and always keeps whatever pairs it has. However, for the payoffs given this is
not an optimal strategy. For instance, if one is dealt 2, 10, jack, queen, king,
all of spades, then rather than standing with this flush it is better to discard
the 2 and draw another card (why is that?). Also, if dealt 10, jack, queen,
king, all of spades, along with the 10 of hearts, it is better to discard the 10
of hearts and draw 1 card than it is to keep the pair of 10s.

192 9 Variance Reduction Techniques

2. We could have made further use of stratified sampling by breaking up the
“other” category into, say, those “other” hands that contain four cards of the
same suit, and those that do not. It is not difficult to analytically compute
the probability that a hand will be without a pair and with four cards of the
same suit. We could then use simulation to estimate the conditional expected
payoffs in these two “other” cases. �

9.5 Applications of Stratified Sampling

In the following subsections, we show how to use ideas of stratified sampling when
analyzing systems having Poisson arrivals, monotone functions of many variables,
and compound random vectors.

In 9.5.1 we consider a model in which arrivals occur according to a Poisson
process, and then we present an efficient way to estimate the expected value of a
random variable whose mean depends on the arrival process only through arrivals
up to some specified time. In 9.5.2 we show how to use stratified sampling to
efficiently estimate the expected value of a nondecreasing function of random
numbers. In 9.5.3 we define the concept of a compound random vector and show
how to efficiently estimate the expectation of a function of this vector.

9.5.1 Analyzing Systems Having Poisson Arrivals

Consider a system in which arrivals occur according to a Poisson process and
suppose we are interested in using simulation to compute E[D], where the value
of D depends on the arrival process only through those arrivals before time t.
For instance, D might be the sum of the delays of all arrivals by time t in a
parallel multiserver queueing system. We suggest the following approach to using
simulation to estimate E[D]. First, with N (t) equal to the number of arrivals by
time t, note that for any specified integral value m

E[D] =
m∑

j=0

E[D|N (t) = j]e−λt(λt) j/j! + E[D|N (t) > m]

×
(

1 −
m∑

j=0

e−λt(λt) j/j!

)
(9.9)

Let us suppose that E[D|N (t) = 0] can be easily computed and also that D can
be determined by knowing the arrival times along with the service time of each
arrival.

Each run of our suggested simulation procedure will generate an independent
estimate of E[D]. Moreover, each run will consist of m + 1 stages, with stage j
producing an unbiased estimator of E[D|N (t) = j], for j = 1, . . . , m, and with
stage m +1 producing an unbiased estimator of E[D|N (t) > m]. Each succeeding

9.5 Applications of Stratified Sampling 193

stage will make use of data from the previous stage along with any additionally
needed data, which in stages 2, . . . , m will be another arrival time and another
service time. To keep track of the current arrival times, each stage will have a set
S whose elements are arranged in increasing value and which represents the set
of arrival times. To go from one stage to the next, we make use of the fact that
conditional on there being a total of j arrivals by time t, the set of j arrival times
are distributed as j independent uniform (0, t) random variables. Thus, the set of
arrival times conditional on j +1 events by time t is distributed as the set of arrival
times conditional on j events by time t along with a new independent uniform (0, t)
random variable.
A run is as follows:

step 1: Let N = 1. Generate a random number U1, and let S = {tU1}.
step 2: Suppose N (t) = 1, with the arrival occurring at time tU1. Generate the

service time of this arrival, and compute the resulting value of D. Call this
value D1.

step 3: Let N = N + 1.
step 4: Generate a random number UN , and add tUN in its appropriate place to

the set S so that the elements in S are in increasing order.
step 5: Suppose N (t) = N , with S specifying the N arrival times; generate the

service time of the arrival at time tUN and, using the previously generated
service times of the other arrivals, compute the resulting value of D. Call
this value DN .

step 6: If N < m return to Step 3. If N = m, use the inverse
transform method to generate the value of N (t) conditional on it
exceeding m. If the generated value is m + k, generate k additional
random numbers, multiply each by t , and add these k numbers
to the set S. Generate the service times of these k arrivals and,
using the previously generated service times, compute D. Call this
value D>m .

With D0 = E[D|N (t) = 0], the estimate from this run is

E =
m∑

j=0

D j e
−λt(λt) j/j! + D>m

(
1 −

m∑
j=0

e−λt(λt) j/j!

)
(9.10)

Because the set of unordered arrival times, given that N (t) = j , is distributed as
a set of j independent uniform (0, t) random variables, it follows that

E[D j] = E[D|N (t) = j], E[D>m] = E[D|N (t) > m]

thus showing that E is an unbiased estimator of E[D]. Generating multiple runs
and taking the average value of the resulting estimates yields the final simulation
estimator.

194 9 Variance Reduction Techniques

Remarks

1. It should be noted that the variance of our estimator
∑m

j=0 D j e−λt(λt) j/j! +
D>m(1 − ∑m

j=0 e−λt(λt) j/j!) is, because of the positive correlations
introduced by reusing the same data, larger than it would be if the D j

were independent estimators. However, the increased speed of the simulation
should more than make up for this increased variance.

2. When computing D j+1, we can make use of quantities used in computing D j .
For instance, suppose Di, j was the delay of arrival i when N (t) = j . If the
new arrival time tU j+1 is the kth smallest of the new set S, then Di, j+1 = Di, j

for i < k.
3. Other variance reduction ideas can be used in conjunction with our approach.

For instance, we can improve the estimator by using a linear combination of
the service times as a control variable. �

It remains to determine an appropriate value of m. A reasonable approach might
be to choose m to make

E[D|N (t) > m]P{N (t) > m} = E[D|N (t) > m]

(
1 −

m∑
j=0

e−λt(λt) j/j!

)

sufficiently small. Because Var(N (t)) = λt , a reasonable choice would be of the
form

m = λt + k
√

λt

for some positive number k.
To determine the appropriate value of k, we can try to bound E[D|N (t) > m] and

then use this bound to determine the appropriate value of k (and m). For instance,
suppose D is the sum of the delays of all arrivals by time t in a single server system
with mean service time 1. Then because this quantity will be maximized when all
arrivals come simultaneously, we see that

E[D|N (t)] �
N (t)−1∑

i=1

i

Because the conditional distribution of N (t) given that it exceeds m will, when m
is at least 5 standard deviations greater than E[N (t)], put most of its weight near
m + 1, we see from the preceding that one can reasonably assume that, for k � 5,

E[D|N (t) > m] � (m + 1)2/2

Using that, for a standard normal random variable Z (see Sec. 4.3 of Ross, S., and
E. Pekoz, A Second Course in Probability, 2007)

P(Z > x) � (1 − 1/x2 + 3/x4)
e−x2

/2

x
√

2π
, x > 0

9.5 Applications of Stratified Sampling 195

we see, upon using the normal approximation to the Poisson, that for k � 5 and
m = λt + k

√
λt , we can reasonably assume that

E[D|N (t) > m]P{N (t) > m} � (m + 1)2 e−k2/2

2k
√

2π

For instance, with λt = 103 and k = 6, the preceding upper bound is about .0008.
We will end this subsection by proving that the estimator E has a smaller variance

than does the raw simulation estimator D.

Theorem
Var(E) � Var(D)

Proof We will prove the result by showing that E can be expressed as a
conditional expectation of D given some random vector. To show this, we will
utilize the following approach for simulating D:

step 1: Generate the value of N ′, a random variable whose distribution is the same
as that of N (t) conditioned to exceed m. That is,

P{N ′ = k} = (λt)k/k!∑∞
k=m+1(λt)k/k!

, k > m

step 2: Generate the values of A1, . . . , AN ′ , independent uniform (0, t) random
variables.

step 3. Generate the values of S1, . . . , SN ′ , independent service time random
variables.

step 4. Generate the value of N (t), a Poisson random variable with mean λt .
step 5. If N (t) = j � m, use the arrival times A1, . . . , A j along with their service

times S1, . . . , Sj to compute the value of D = D j .
step 6. If N (t) > m, use the arrival times A1, . . . , AN ′ along with their service

times S1, . . . , SN ′ to compute the value of D = D>m .

Nothing that,

E[D|N ′, A1, . . . , AN ′ , S1, . . . , SN ′]

=
∑

j

E[D|N ′, A1, . . . , AN ′ , S1, . . . , SN ′ , N (t) = j]

×P{N (t) = j |N ′, A1, . . . , AN ′ , S1, . . . , SN ′ }
=
∑

j

E[D|N ′, A1, . . . , AN ′ , S1, . . . , SN ′ , N (t) = j]P{N (t) = j}

=
m∑

j=0

D j P{N (t) = j} +
∑
j>m

D>m P{N (t) = j}

= E

196 9 Variance Reduction Techniques

we see that E is the conditional expectation of D given some data. Consequently,
the result follows from the conditional variance formula. �

9.5.2 Computing Multidimensional Integrals of Monotone
Functions

Suppose that we want to use simulation to estimate the n dimensional integral

θ =
∫ 1

0

∫ 1

0
· · ·

∫ 1

0
g(x1, x2, . . . , xn) dx1 dx2 · · · dxn

With U1, . . . , Un being independent uniform (0,1) random variables, the preceding
can be expressed as

θ = E[g(U1, . . . , Un)]

Suppose that g is a nondecreasing function of each of its variables. That is,
for fixed values x1, . . . , xi−1, xi+1, . . . , xn , the function g(x1, . . . , xi , . . . , xn) is
increasing in xi , for each i = 1, . . . , n. If we let Y = 	n

i=1Ui , then because
both Y and g(U1, . . . , Un) are increasing functions of the Ui , it would seem
that E[Var(g(U1, . . . , Un)|Y)] might often be relatively small. Thus, we should
consider estimating θ by stratifying on 	n

i=1Ui . To accomplish this, we need to
first determine

(a) the probability distribution of
∏n

i=1 Ui ;
(b) how to generate the value of

∏n
i=1 Ui conditional that it lies in some interval;

(c) how to generate U1, . . . , Un conditional on the value of
∏n

i=1 Ui .

To accomplish the preceding objectives, we relate the Ui to a Poisson process.
Recall that − log(U) is exponential with rate 1, and interpret − log(Ui) as the time
between the (i − 1)th and the i th event of a Poisson process with rate 1. With this
interpretation, the j th event of the Poisson process will occur at time Tj , where

Tj =
j∑

i=1

− log(Ui) = − log(U1 . . . U j)

Because the sum of n independent exponential random variables with rate 1 is a
gamma (n, 1) random variable, we can generate the value of Tn = − log(U1 · · · Un)

by generating (in a stratified fashion to be discussed) a gamma (n, 1) random
variable. This results in a generated value for 	n

i=1Ui , namely

n∏
i=1

Ui = e−Tn

To generate the individual random variables U1, . . . , Un conditional on the value
of their product, we use the Poisson process result that conditional on the nth event

9.5 Applications of Stratified Sampling 197

of the Poisson process occurring at time t, the sequence of the first n − 1 event
times is distributed as an ordered sequence of n − 1 independent uniform (0, t)
random variables. Thus, once the value of Tn has been generated, the individual
Ui can be obtained by first generating n − 1 random numbers V1, . . . , Vn−1, and
then ordering them to obtain their ordered values V(1) < V(2) < . . . < V(n−1). As
Tn V(j) represents the time of event j, this yields

Tn V(j) = − log(U1 . . . U j)

= − log(U1 . . . U j−1) − log(U j)

= Tn V(j−1) − log(U j)

Therefore, with V(0) = 0, V(n) = 1,

U j = e−Tn [V(j)−V(j−1)], j = 1, . . . , n (9.11)

Thus we see how to generate U1, . . . , Un conditional on the value of 	n
i=1Ui . To

perform the stratification, we now make use of the fact that Tn = − log(n
i=1Ui) is

a gamma (n, 1) random variable. Let Gn be the gamma (n, 1) distribution function.
If we plan to do m simulation runs, then on the kth run a random number U should
be generated and Tn should be taken to equal G−1

n

(
U+k−1

m

)
. For this value of Tn ,

we then use the preceding to simulate the values of U1, . . . , Un and calculate
g(U1, . . . , Un). [That is, we generate n − 1 random numbers, order them to obtain
V(1) < V(2) < . . . < V(n−1), and let the U j be given by (9.11)]. The average
of the values of g obtained in the m runs is the stratified sampling estimator of
E[g(U1, . . . , Un)].

Remarks

1. A gamma random variable with parameters n, 1 has the same distribution as
does 1

2χ
2
2n , where χ 2

2n , is a chi-squared random variable with 2n degrees of
freedom. Consequently,

G−1
n (x) = 1

2
F−1

χ2
2n

(x)

where F−1
χ2

2n
(x) is the inverse of the distribution function of a chi-squared

random variable with 2n degrees of freedom. Approximations for the inverse
of the chi-squared distribution are readily available in the literature.

2. With a slight modification, we can apply the preceding stratification idea
even when the underlying function is monotone increasing in some of its
coordinates and monotone decreasing in the others. For instance, suppose
we want to evaluate E[h(U1, . . . , Un)], where h is monotone decreasing in
its first coordinate and monotone increasing in the others. Using that 1 − U1

is also uniform on (0,1), we can write

E[h(U1, U2, . . . , Un)] = E[h(1−U1, U2, . . . , Un)] = E[g(U1, U2, . . . , Un)]

198 9 Variance Reduction Techniques

where g(x1, x2, . . . , xn) ≡ h(1 − x1, x2, . . . , xn) is monotone increasing in
each of its coordinates. �

9.5.3 Compound Random Vectors

Let N be a nonnegative integer valued random variable with probability mass
function

p(n) = P{N = n}
and suppose that N is independent of the sequence of independent and identically
distributed random variables X1, X2, . . ., having the common distribution function
F. Then the random vector (X1, . . . , X N) is called a compound random vector.
(When N = 0, call the compound random vector the null vector.)

For a family of functions gn(x1, . . . , xn), n � 0, with g0 ≡ 0, suppose we
are interested in using simulation to estimate E[gN (X1, . . . , X N)], for a specified
compound random vector (X1, . . . , X N). Some functional families of interest are
as follows.

• If

gn(x1, . . . , xn) =
{

1, if
∑n

i=1 xi > a
0, if otherwise

then E[gN (X1, . . . , X N)] is the probability that a compound random variable
exceeds a.

• A generalization of the preceding example is, for 0 < α < 1, to take

gn(x1, . . . , xn) =
{

1, if
∑n

i=1 αi xi > a
0, if otherwise

Now E[gN (X1, . . . , X N)] is the probability that the discounted sum of a
compound random vector exceeds a.

• Both of the previous examples are special cases of the situation where, for a
specified sequence ai , i � 1,

gn(x1, . . . , xn) =
{

1, if
∑n

i=1 ai xi > a
0, if otherwise

• One is sometimes interested in a function of a weighted sum of the k largest
values of the random vector, leading to the consideration of the functions

gn(x1, . . . , xn) = g

(
min(k,n)∑

i=1

ai x(i :n)

)

where x(i :n) is the i th largest of the values x1, . . . , xn , and where g is a specified
function with g(0) = 0.

9.5 Applications of Stratified Sampling 199

To use simulation to estimate θ ≡ E[gN (X1, . . . , X N)], choose a value of m such
that P{N > m} is small, and suppose that we are able to simulate N conditional
on it exceeding m. With pn = P{N = n}, conditioning on the mutually exclusive
and exhaustive possibilities that N is 0 or 1, . . ., or m, or that it exceeds m, yields

θ =
m∑

n=0

E[gN (X1, . . . , X N)|N = n]pn + E[gN (X1, . . . , X N)|N > m]P{N > m}

=
m∑

n=0

E[gn(X1, . . . , Xn)|N = n]pn + E[gN (X1, . . . , X N)|N > m]P{N > m}

=
m∑

n=0

E[gn(X1, . . . , Xn)]pn + E[gN (X1, . . . , X N)|N > m]

[
1 −

m∑
n=0

pn

]

where the final equality made use of the independence of N and X1, . . . , Xn .
To effect a simulation run to estimate E[gN (X1, . . . , X N)], first generate the

value of N conditional on it exceeding m. Suppose the generated value is m ′.
Then generate m ′ independent random variables X1, . . . , Xm′ having distribution
function F. That completes a simulation run, with the estimator from that run being

E =
m∑

n=1

gn(X1, . . . , Xn)pn + gm′(X1, . . . , Xm′)

[
1 −

m∑
n=0

pn

]

Remarks

1. If it is relatively easy to compute the values of the functions gn , we
recommend that one also use the data X1, . . . , Xm′ in the reverse order to
obtain a second estimator, and then average the two estimators. That is, use
the run estimator

E∗ = 1

2

(
E +

m∑
n=1

gn(Xm′ , . . . , Xm′−n+1)pn + gm′ (Xm′ , . . . , X1)

[
1 −

m∑
n=0

pn

])

2. If if is difficult to generate N conditional on its value exceeding m, it is
often worthwhile to try to bound E[gN (X1, . . . , X N)|N > m]P{N > m}
and then determine an appropriately large value of m that makes the bound
negligibly small. (For instance, if the functions gn are indicator—that is, 0 or
1—functions then E[gN (X1, . . . , X N)|N > m]P{N > m} � P{N > m}.)
The result from a simulation that ignores the term E[gN (X1, . . . , X N)|N >

m]P{N > m} will often be sufficiently accurate.
3. If E[N |N > m] can be computed then it can be used as a control variable. �

200 9 Variance Reduction Techniques

9.5.4 The Use of Post-Stratification

Post-stratification is a powerful but underused variance reduction technique. For
instance, suppose we want to estimate E[X] and are thinking of using Y as a
control variable. However, if the probability distribution of Y rather than just its
mean is known, then it it is better to post-stratify on Y . Moreover, if one is planning
to stratify on Y by using proportional sampling - that is, doing n P(Y = i) of the
total of n runs conditional on Y = i - as opposed to trying to estimate the optimal
number of runs in each strata, then generating the data unconditionally and then
post-stratifying is usually as good as stratifying.

As examples of the preceding, suppose we want to estimate θ =
E[h(X1, . . . , Xk)], where h is a monotone increasing function of X =
(X1, . . . , Xk). If the distribution of

∑k
i=1 Xi is known, then one can effectively

post-stratify on this sum. Consider the following instances where this would be
the case.

1. Suppose that (X1, . . . , Xk) has a multivariate normal distribution. Hence,
S = ∑k

i=1 Xi will be normal, say with mean μ and variance σ 2. Breaking the
possible values of S into m groupings, say by choosing −∞ = a1 < a2 <

· · · < am < am+1 = ∞ and letting J = i if ai < S < ai+1, then

θ =
m∑

i=1

E[h(X)|J = i]P(J = i)

If ni of the n runs result in J = i then, with h̄i equal to the average of the
values of h(X) over those ni runs, the post-stratification estimate of θ , call
it θ̂ , is

θ̂ =
m∑

i=1

h̄i P(J = i)

where P(J = i) = �(
ai+1−μ

σ
)−�(

ai −μ

σ
), with � being the standard normal

distribution function.
2. If X1, . . . , Xk are independent Poisson random variables with means

λ1, . . . , λk , then S = ∑k
i=1 Xi will be Poisson with mean λ = ∑k

i=1 λi .

Hence, we can choose m and write

θ =
m∑

i=0

E[h(X)|S = i]e−λλi/ i! + E[h(X)|S > m]P(S > m).

The unconditionally generated data can then be used to estimate the quantities
E[h(X)|S = i]and E[h(X)|S > m].

3. Suppose X1, . . . , Xk are independent Bernoulli random variables with
parameters p1, . . . , pk . The distribution of S = ∑k

i=1 Xi can be computed

9.6 Importance Sampling 201

using the following recursive idea. For 1 � r � k, let

Pr (j) = P(Sr = j)

where Sr = ∑r
i=1 Xi . Now,with qi = 1 − pi , we have

Pr (r) =
r∏

i=1

pi , Pr (0) =
r∏

i=1

qi

For 0 < j < r, conditioning on Xr yields the recursion:

Pr (j) = P(Sr = j |Xr = 1)pr + P(Sr = j |Xr = 0)qr

= Pr−1(j − 1)pr + Pr−1(j)qr

Starting with P1(1) = p1, P1(0) = q1, these equations can be recursively
solved to obtain the function Pk(j). After this initial calculation we can do
an unconditional simulation and then estimate θ by

θ̂ =
k∑

j=0

h̄ j Pk(j)

where h̄ j is the average of the values of h over all simulation runs that result
in
∑k

i=1 Xi = j.

9.6 Importance Sampling

Let X = (X1, . . . , Xn) denote a vector of random variables having a joint density
function (or joint mass function in the discrete case) f (x) = f (x1, . . . , xn), and
suppose that we are interested in estimating

θ = E[h(X)] =
∫

h(x) f (x) dx

where the preceding is an n-dimensional integral over all possible values of x. (If
the Xi are discrete, then interpret the integral as an n-fold summation.)

Suppose that a direct simulation of the random vector X, so as to compute values
of h(X), is inefficient, possibly because (a) it is difficult to simulate a random
vector having density function f (x), or (b) the variance of h(X) is large, or (c) a
combination of (a) and (b).

Another way in which we can use simulation to estimate θ is to note that if g(x)

is another probability density such that f (x) = 0 whenever g(x) = 0, then we can
express θ as

θ =
∫

h(x) f (x)

g(x)
g(x) dx

= Eg

[
h(X) f (X)

g(X)

]
(9.12)

202 9 Variance Reduction Techniques

where we have written Eg to emphasize that the random vector X has joint density
g(x).

It follows from Equation (9.12) that θ can be estimated by successively
generating values of a random vector X having density function g(x) and then
using as the estimator the average of the values of h(X) f (X)/g(X). If a density
function g(x) can be chosen so that the random variable h(X) f (X)/g(X) has
a small variance, then this approach—referred to as importance sampling—can
result in an efficient estimator of θ .

Let us now try to obtain a feel for why importance sampling can be useful. To
begin, note that f (X) and g(X) represent the respective likelihoods of obtaining
the vector X when X is a random vector with respective densities f and g. Hence,
if X is distributed according to g, then it will usually be the case that f (X) will
be small in relation to g(X), and thus when X is simulated according to g the
likelihood ratio f (X)/g(X) will usually be small in comparison to 1. However, it
is easy to check that its mean is 1:

Eg

[
f (X)

g(X)

]
=
∫

f (x)

g(x)
g(x) dx =

∫
f (x) dx = 1

Thus we see that even though f (X)/g(X) is usually smaller than 1, its mean is
equal to 1, thus implying that it is occasionally large and so will tend to have a large
variance. So how can h(X) f (X)/g(X) have a small variance? The answer is that we
can sometimes arrange to choose a density g such that those values of x for which
f (x)/g(x) is large are precisely the values for which h(x) is exceedingly small,
and thus the ratio h(X) f (X)/g(X) is always small. Since this will require that h(x)

is sometimes small, importance sampling seems to work best when estimating a
small probability, for in this case the function h(x) is equal to 1 when x lies in
some set and is equal to 0 otherwise.

We will now consider how to select an appropriate density g. We will find that
the so-called tilted densities are useful. Let M(t) = E f [et X] = ∫

etx f (x) dx be
the moment generating function corresponding to a one-dimensional density f.

Definition A density function

ft(x) = etx f (x)

M(t)

is called a tilted density of f,−∞ < t < ∞.

A random variable with density ft tends to be larger than one with density f
when t > 0 and tends to be smaller when t < 0.

In certain cases the tilted densities ft have the same parametric form as does f.

Example 9t If f is the exponential density with rate λ, then

ft(x) = Cetxλe−λx = Ce−(λ−t)x

9.6 Importance Sampling 203

where C = 1/M(t) does not depend on x. Therefore, for t < λ, ft is an exponential
density with rate λ − t .

If f is a Bernoulli probability mass function with parameter p, then

f (x) = px(1 − p)1−x , x = 0, 1

Hence, M(t) = E f [et X] = pet + 1 − p, and so

ft(x) = 1

M(t)
(pet)x(1 − p)1−x

=
(

pet

pet + 1 − p

)x (1 − p

pet + 1 − p

)1−x

That is, ft is the probability mass function of a Bernoulli random variable with
parameter pt = (pet)/(pet + 1 − p).

We leave it as an exercise to show that if f is a normal density with parameters
μ and σ 2 then ft is a normal density having mean μ + σ 2t and variance σ 2. �

In certain situations the quantity of interest is the sum of the independent
random variables X1, . . . , Xn . In this case the joint density f is the product of
one-dimensional densities. That is,

f (x1, . . . , xn) = f1(x1) · · · fn(xn)

where fi is the density function of Xi . In this situation it is often useful to generate
the Xi according to their tilted densities, with a common choice of t employed.

Example 9u Let X1, . . . , Xn be independent random variables having
respective probability density (or mass) functions fi , for i = 1, . . . , n. Suppose
we are interested in approximating the probability that their sum is at least as large
as a, where a is much larger than the mean of the sum. That is, we are interested in

θ = P{S � a}
where S = ∑n

i=1 Xi , and where a >
∑n

i=1 E[Xi]. Letting I {S � a} equal 1 if
S � a and letting it be 0 otherwise, we have that

θ = Ef [I {S � a}]
where f = (f1, . . . , fn). Suppose now that we simulate Xi according to the tilted
mass function fi,t , i = 1, . . . , n, with the value of t, t > 0, left to be determined.
The importance sampling estimator of θ would then be

θ̂ = I {S � a}
∏ fi (Xi)

fi,t(Xi)

204 9 Variance Reduction Techniques

Now,
fi (Xi)

fi,t(Xi)
= Mi (t)e

−t Xi

and so,
θ̂ = I {S � a}M(t)e−t S

where M(t) = 	Mi (t) is the moment generating function of S. Since t > 0 and
I {S � a} is equal to 0 when S < a, it follows that

I {S � a}e−t S � e−ta

and so
θ̂ � M(t)e−ta

To make the bound on the estimator as small as possible we thus choose t, t > 0,
to minimize M(t)e−ta . In doing so, we will obtain an estimator whose value on
each iteration is between 0 and mint M(t)e−ta . It can be shown that the minimizing
t—call it t∗—is such that

Et∗[S] = Et∗

[
n∑

i=1

Xi

]
= a

where, in the preceding, we mean that the expected value is to be taken under the
assumption that the distribution of Xi is fi,t∗ for i = 1, . . . , n.

For instance, suppose that X1, . . . , Xn are independent Bernoulli random
variables having respective parameters pi , for i = 1, . . . , n. Then, if we generate
the Xi according to their tilted mass functions pi,t , i = 1, . . . , n, the importance
sampling estimator of θ = P{S � α} is

θ̂ = I {S � a}e−t S
n∏

i=1

(pi e
t + 1 − pi)

Since pi,t is the mass function of a Bernoulli random variable with parameter
(pi et)/(pi et + 1 − pi), it follows that

Et

[
n∑

i=1

Xi

]
=

n∑
i=1

pi et

pi et + 1 − pi

The value of t that makes the preceding equal to a can be numerically approximated
and the t utilized in the simulation.

As an illustration, suppose that n = 20, pi = 0.4, a = 16. Then

Et [S] = 20
0.4et

0.4et + 0.6

9.6 Importance Sampling 205

Setting this equal to 16 yields after a little algebra that

et∗ = 6

Thus, if we generate the Bernoullis using the parameter (0.4et∗)/(0.4et∗ + 0.6) =
0.8, then as

M(t∗) = (0.4et∗ + 0.6)20 and e−t∗S = (1/6)S

we see that the importance sampling estimator is

θ̂ = I {S � 16}(1/6)S320

It follows from the preceding that

θ̂ � (1/6)16320 = 81/216 = 0.001236

That is, on each iteration the value of the estimator is between 0 and 0.001236.
Since, in this case, θ is the probability that a binomial random variable with
parameters 20, 0.4 is at least 16, it can be explicitly computed with the result
θ=0.000317. Hence, the raw simulation estimator I, which on each iteration takes
the value 0 if the sum of the Bernoullis with parameter 0.4 is less than 16 and takes
the value 1 otherwise, will have variance

Var(I) = θ(1 − θ) = 3.169 × 10−4

On the other hand, it follows from the fact that 0 � θ � 0.001236 that (see
Exercise 29) �

Var(θ̂) � 2.9131 × 10−7

Example 9v Consider a single server queue in which the times between
successive customer arrivals have density function f and the service times have
density g. Let Dn denote the amount of time that the nth arrival spends waiting in
queue and suppose we are interested in estimating α = P{Dn � a} when a is much
larger than E[Dn]. Rather than generating the successive interarrival and service
times according to f and g, respectively, we should generate them according to the
densities f−t and gt , where t is a positive number to be determined. Note that using
these distributions as opposed to f and g will result in smaller interarrival times
(since −t < 0) and larger service times. Hence, there will be a greater chance
that Dn > a than if we had simulated using the densities f and g. The importance
sampling estimator of α would then be

α̂ = I {Dn > a}et (Sn−Yn)[M f (−t)Mg(t)]
n

where Sn is the sum of the first n interarrival times, Yn is the sum of the first n
service times, and M f and Mg are the moment generating functions of the densities
f and g, respectively. The value of t used should be determined by experimenting
with a variety of different choices. �

206 9 Variance Reduction Techniques

Example 9w Let X1, X2, . . . be a sequence of independent and identically
distributed normal random variables having mean μ and variance 1, where μ < 0.
An important problem in the theory of quality control (specifically in the analysis
of cumulative sum charts) is to determine the probability that the partial sums of
these values exceed B before going below −A. That is, let

Sn =
n∑

i=1

Xi

and define
N = Min{n : either Sn < −A, or Sn > B}

where A and B are fixed positive numbers. We are now interested in estimating

θ = P{SN > B}
An effective way of estimating θ is by simulating the Xi as if they were normal
with mean −μ and variance 1, stopping again when their sum either exceeds B
or falls below −A. (Since −μ is positive, the stopped sum is greater than B more
often than if we were simulating with the original negative mean.) If X1, . . . , X N

denote the simulated variables (each being normal with mean −μ and variance 1)
and

I =
{

1 if
∑N

i=1 Xi > B
0 otherwise

then the estimate of θ from this run is

I
N∏

i=1

[
fμ(Xi)

f−μ(Xi)

]
(9.13)

where fc is the normal density with mean c and variance 1. Since

fμ(x)

f−μ(x)
=

exp
{
− (x−μ)2

2

}
exp

{
− (x+μ)2

2

} = e2μx

it follows from (9.13) that the estimator of θ based on this run is

I exp

{
2μ

N∑
i=1

Xi

}
= I exp{2μSN }

When I is equal to 1, SN exceeds B and, since μ < 0, the estimator in this case is less
than e2μB . That is, rather than obtaining from each run either the value 0 or 1—as
would occur if we did a straight simulation—we obtain in this case either the value

9.6 Importance Sampling 207

0 or a value that is less than e2μB , which strongly indicates why this importance
sampling approach results in a reduced variance. For example, if μ = −0.1 and
B = 5, then the estimate from each run lies between 0 and e−1 = 0.3679. In
addition, the above is theoretically important because it shows that

P{cross B before − A} � e2μB

Since the above is true for all positive A, we obtain the interesting result

P{ever cross B} � e2μB �

Example 9x Let X = (X1, . . . , X100) be a random permutation of
(1, 2, . . . , 100). That is, X is equally likely to be any of the (100)! permutations.
Suppose we are interested in using simulation to estimate

θ = P

{
100∑
j=1

j X j > 290, 000

}

To obtain a feel for the magnitude of θ , we can start by computing the mean and
standard deviation of

∑100
j=1 j X j . Indeed, it is not difficult to show that

E

[
100∑
j=1

j X j

]
= 100(101)2/4 = 255, 025

SD

(
100∑
j=1

j X j

)
= √

(99)(100)2(101)2/144 = 8374.478

Hence, if we suppose that
∑100

j=1 j X j is roughly normally distributed then, with Z
representing a standard normal random variable, we have that

θ ≈ P

{
Z >

290, 000 − 255, 025

8374.478

}
= P{Z > 4.1764}
= 0.00001481

Thus, θ is clearly a small probability and so an importance sampling estimator is
worth considering.

To utilize importance sampling we would want to generate the permutation X
so that there is a much larger probability that

∑100
j=1 j X j > 290, 000. Indeed, we

should try for a probability of about 0.5. Now,
∑100

j=1 j X j will attain its largest value
when X j = j, j = 1, . . . , 100, and indeed it will tend to be large when X j tends to
be large when j is large and small when j is small. One way to generate a permutation
X that will tend to be of this type is as follows: Generate independent exponential

208 9 Variance Reduction Techniques

random variables Y j , j = 1, . . . , 100, with respective rates λ j , j = 1, . . . , 100
where λ j , j = 1, . . . , 100, is an increasing sequence whose values will soon be
specified. Now, for j = 1, . . . , 100, let X j be the index of the jth largest of these
generated values. That is,

YX1 > YX2 > · · · > YX100

Since, for j large, Y j will tend to be one of the smaller Y’s, it follows that X j will
tend to be large when j is large and so

∑100
j=1 j X j will tend to be larger than if X

were a uniformly distributed permutation.
Let us now compute E[

∑100
j=1 j X j]. To do so, let R(j) denote the rank of

Y j , j = 1, . . . , 100, where rank 1 signifies the largest, rank 2 the second largest,
and so on until rank 100, which is the smallest. Note that since X j is the index of
the jth largest of the Y’s, it follows that R(X j) = j . Hence,

100∑
j=1

j X j =
100∑
j=1

R(X j)X j =
100∑
j=1

j R(j)

where the final equality follows since X1, . . . , X100 is a permutation of 1, . . . , 100.
Therefore, we see that

E

[
100∑
j=1

j X j

]
=

100∑
j=1

j E[R(j)]

To compute E[R j], let I (i, j) = 1 if Y j < Yi and let it be 0 otherwise, and note
that

R j = 1 +
∑
i :i
= j

I (i, j)

In words, the preceding equation states that the rank of Y j is 1 plus the number of
the Yi that are larger than it. Hence, taking expectations and using the fact that

P{Y j < Yi } = λ j

λi + λ j
,

we obtain that

E[R j] = 1 +
∑
i :i
= j

λ j

λi + λ j

and thus

E

[
100∑
j=1

j X j

]
=

100∑
j=1

j

(
1 +

∑
i :i
= j

λ j

λi + λ j

)

9.6 Importance Sampling 209

If we let λ j = j 0.7, j = 1, . . . , 100, then a computation shows that
E[
∑100

j=1 j X j] = 290, 293.6, and so when X is generated using these rates it
would seem that

P

{
100∑
j=1

j X j > 290,000

}
≈ 0.5

Thus, we suggest that the simulation estimator should be obtained by first
generating independent exponentials Y j with respective rates j 0.7, and then letting
X j be the index of the jth largest, j = 1, . . . , 100. Let I = 1 if

∑100
j=1 j X j >

290, 000 and let it be 0 otherwise. Now, the outcome will be X when YX100 is the
smallest Y, YX99 is the second smallest, and so on. The probability of this outcome
is 1/(100)! when X is equally likely to be any of the permutations, whereas its
probability when the simulation is as performed is

(X100)
0.7∑100

j=1(X j)0.7

(X99)
0.7∑99

j=1(X j)0.7
· · · (X2)

0.7∑2
j=1(X j)0.7

(X1)
0.7

(X1)0.7

Therefore, the importance sampling estimator from a single run is

θ̂ = I

(100)!

∏100
j=1

(∑n
n=1(X j)

0.7
)

(∏100
n=1 n

)0.7 = I
∏100

n=1

(∑n
j=1(X j)

0.7
)

(∏100
n=1 n

)1.7

Before the simulation is begun, the values of C = 1.7
∑100

n=1 log(n) and
a(j) = − j−0.7, j = 1, . . . , 100 should be computed. A simulation run can then
be obtained as follows:

For j = 1 to 100
Generate a random number U
Y j = a(j) log U
Next
Let X j , j = 1, . . . , 100, be such that YX j is the jth largest Y

If
∑n

j=1 j X j � 290,000 set θ̂ = 0 and stop
S = 0, P = 0
For n = 1 to 100
S = S + (Xn)

0.7

P = P + log(S)

Next
θ̂ = eP−C

A sample of 50,000 simulation runs yielded the estimate θ̂ = 3.77 × 10−6,
with a sample variance 1.89 × 10−8. Since the variance of the raw simulation
estimator, which is equal to 1 if

∑100
j=1 j X j > 290,000 and is equal to 0 otherwise,

210 9 Variance Reduction Techniques

is Var(I) = θ(1 − θ) ≈ 3.77 × 10−6, we see that

Var(I)

Var(θ̂)
≈ 199.47

�

Importance sampling is also quite useful in estimating a conditional expectation
when one is conditioning on a rare event. That is, suppose X is a random vector
with density function f and that we are interested in estimating

θ = E[h(X)|X ∈ A]

where h(x) is an arbitrary real valued function and where P{X ∈ A} is a small
unknown probability. Since the conditional density of X given that it lies in A is

f (x|X ∈ A) = f (x)

P{X ∈ A} , x ∈ A

we have that

θ =
∫

x∈A h(x) f (x)d(x)

P{X ∈ A}
= E[h(X)I (X ∈ A)]

E[I (X ∈ A)]

= E[N]

E[D]

where E[N] and E[D] are defined to equal the numerator and denominator in the
preceding, and I (X ∈ A) is defined to be 1 if X ∈ A and 0 otherwise. Hence, rather
than simulating X according to the density f, which would make it very unlikely
to be in A, we can simulate it according to some other density g which makes this
event more likely. If we simulate k random vectors X1, . . . , Xk according to g, then
we can estimate E[N] by 1

k

∑k
i=1 Ni and E[D] by 1

k

∑k
i=1 Di , where

Ni = h(Xi)I (Xi ∈ A) f (Xi)

g(Xi)

and

Di = I (Xi ∈ A) f (Xi)

g(Xi)

Thus, we obtain the following estimator of θ :

θ̂ =
∑k

i=1 h(Xi)I (Xi ∈ A) f (Xi)/g(Xi)∑k
i=1 I (Xi ∈ A) f (Xi)/g(Xi)

(9.14)

The mean square error of this estimator can then be estimated by the bootstrap
approach (see, for instance, Example 7e).

9.6 Importance Sampling 211

Example 9y Let Xi be independent exponential random variables with
respective rates 1/(i + 2), i = 1, 2, 3, 4. Let S = ∑4

i=1 Xi , and suppose that
we want to estimate θ = E[S|S > 62]. To accomplish this, we can use importance
sampling with the tilted distributions. That is, we can choose a value t and
then simulate the Xi with rates 1/(i + 2) − t . If we choose t = 0.14, then
Et [S] = 68.43. So, let us generate k sets of exponential random variables Xi

with rates 1/(i + 2) − 0.14, i = 1, 2, 3, 4, and let Sj be the sum of the jth set,
j = 1, . . . , k. Then we can estimate

E[SI (S > 62)]by
C

k

k∑
j=1

Sj I (Sj > 62)e−0.14S j

E[I (S > 62)]by
C

k

k∑
j=1

I (Sj > 62)e−0.14S j

where C = ∏4
i=1

1
1−0.14(i+2)

= 81.635. The estimator of θ is

θ̂ =
∑k

j=1 Sj I (Sj > 62)e−0.14S j∑k
j=1 I (Sj > 62)e−0.14S j

�

The importance sampling approach is also useful in that it enables us to estimate
two (or more) distinct quantities in a single simulation. For example, suppose that

θ1 = E[h(Y)] and θ2 = E[h(W)]

where Y and W are random vectors having joint density functions f and g,
respectively. If we now simulate W, we can simultaneously use h(W) and
h(W) f (W)/g(W) as estimators of θ2 and θ1, respectively. For example, suppose
we simulate T, the total time in the system of the first r customers in a queueing
system in which the service distribution is exponential with mean 2. If we now
decide that we really should have considered the same system but with a service
distribution that is gamma distributed with parameters (2, 1), then it is not necessary
to repeat the simulation; we can just use the estimator

T

∏r
i=1 Si exp{−Si }∏r

i=1

(
1
2 exp{−Si/2}) = 2r T exp

{
−

r∑
i=1

Si

2

}
r∏

i=1

Si

where Si is the (exponentially) generated service time of customer i. [The above
follows since the exponential service time density is g(s) = 1

2 e−s/2, whereas the
gamma (2, 1) density is f (s) = se−s .]

Importance sampling can also be used to estimate tail probabilities of a random
variable X whose density f is known, but whose distribution function is difficult to

212 9 Variance Reduction Techniques

evaluate. Suppose we wanted to estimate Pf {X > a} where the subscript f is used
to indicate that X has density function f, and where a is a specified value. Letting

I (X > a) =
{

1, if X > a
0, if X � a

we have the following.

Pf {X > a} = E f [I (X > a)]

= Eg

[
I (X > a)

f (X)

g(X)

]
the importance sampling identity

= Eg

[
I (X > a)

f (X)

g(X)

∣∣∣∣ X > a

]
Pg{X > a}

+Eg

[
I (X > a)

f (X)

g(X)

∣∣∣∣ X � a

]
Pg{X � a}

= Eg

[
f (X)

g(X)

∣∣∣∣ X > a

]
Pg{X > a}

If we let g be the exponential density

g(x) = λe−λx , x > 0

the preceding shows that for a > 0

Pf {X > a} = e−λa

λ
Eg[eλX f (X)|X > a]

Because the conditional distribution of an exponential random variable that is
conditioned to exceed a has the same distribution as a plus the exponential, the
preceding gives that

Pf {X > a} = e−λa

λ
Eg

[
eλ(X+a) f (X + a)

]
= 1

λ
Eg[eλX f (X + a)]

Thus, we can estimate the tail probability Pf {X > a} by generating X1, . . . , Xk ,
independent exponential random variables with rate λ, and then using

1

λ

1

k

k∑
i=1

eλXi f (Xi + a)

as the estimator.

9.6 Importance Sampling 213

As an illustration of the preceding, suppose that f is the density function of a
standard normal random variable Z, and that a > 0. With X being an exponential
random variable with rate λ = a, the preceding yields that

P{Z > a} = 1

a
√

2π
E[eaX−(X+a)2/2]

= e−a2/2

a
√

2 π
E[e−X2/2]

Thus we can estimate P{Z > a} by generating X, an exponential random variable
with rate a, and then using

E ST = e−a2/2

a
√

2 π
e−X2/2

as the estimator. To compute the variance of this estimator note that

E[e−X2/2] =
∫ ∞

0
e−x2/2ae−ax dx

= a
∫ ∞

0
exp{−(x2 + 2ax)/2} dx

= aea2/2

∫ ∞

0
exp{−(x + a)2/2} dx

= aea2/2

∫ ∞

a
exp{−y2/2} dy

= aea2/2
√

2π �(a)

Similarly, we can show that

E[e−X2
] = aea2/4√π �(a/

√
2)

Combining the preceding then yields Var(EST). For instance, when a = 3

E[e−X2/2] = 3e4.5
√

2π �(3) ≈ 0.9138

and
E[e−X2

] = 3e2.25√π �(2.1213) ≈ 0.8551

giving that
Var(e−X2/2) ≈ .8551 − (.9138)2 = 0.0201

Because e−4.5

3
√

2π
≈ 0.001477, we obtain, when a = 3, that

Var(E ST) = (0.001477)2Var(e−X2/2) ≈ 4.38 × 10−8

214 9 Variance Reduction Techniques

As a comparison, the variance of the raw simulation estimator, equal to 1 if a
generated standard normal exceeds 3 and to 0 otherwise, is P{Z > 3}(1 − P{Z >

3}) ≈ 0.00134. Indeed, the variance of EST is so small that the estimate from
a single exponential will, with 95 percent confidence, be within ±0.0004 of the
correct answer.

Example 9z Importance sampling and conditional expectation can sometimes
be combined by using the identity

E f [X] = E f

[
E f [X |Y]

] = Eg

[
E f [X |Y]

f (X)

g(X)

]

For instance, suppose we were interested in estimating P(X1 + X2 > 10) =
E[I {X1 + X2 > 10}], where X1 and X2 are independent exponentials with mean
1. If we estimate the preceding via importance sampling, with g being the joint
density of two independent exponentials with mean 5, then X1, X2 is generated
according to g and the estimator is

I {X1 + X2 > 10} e−(X1+X2)

1
25 e−(X1+X2)/5

= 25 I {X1 + X2 > 10}e− 4
5 (X1+X2) � 25 e−8

On the other hand, we could first condition on X1 to obtain that

P(X1 + X2 > 10|X1) =
{

1, if X1 > 10
e−(10−X1), if X1 � 10

That is, P(X1 + X2 > 10|X1) = e−(10−X1)+ . Hence, if we now estimate
E[e−(10−X1)+] by importance sampling, sampling X1 from an exponential
distribution with mean 10, then the estimator of P(X1 + X2 > 10) is

e−(10−X1)+ e−X1

1
10 e−X1/10

= 10 e−(10−X1)+e−.9X1 � 10 e−9

where the inequality follows because

X1 � 10 ⇒ e−(10−X1)+e−.9X1 = e−(10−X1/10) � e−9

and
X1 > 10 ⇒ e−(10−X1)+e−.9X1 = e−.9X1 � e−9

�

9.7 Using Common Random Numbers

Suppose that each of n jobs is to be processed by either of a pair of identical
machines. Let Ti denote the processing time for job i, i,= 1, . . . , n. We are

9.7 Using Common Random Numbers 215

interested in comparing the time it takes to complete the processing of all the
jobs under two different policies for deciding the order in which to process jobs.
Whenever a machine becomes free, the first policy, called longest job first, always
chooses the remaining job having the longest processing time, whereas the second
policy, called shortest job first, always selects the one having the shortest processing
time. For example, if n = 3 and T1 = 2, T2 = 5, and T3 = 3, then the longest job
first would complete processing at time 5, whereas the shortest job first would not
get done until time 7. We would like to use simulation to compare the expected
difference in the completion times under these two policies when the times to
process jobs, T1, . . . , Tn , are random variables having a given distribution F.

In other words, if g(t1, . . . , tn) is the time it takes to process the n jobs
having processing times t1, . . . , tn when we use the longest job first policy and if
h(t1, . . . , tn) is the time when we use the shortest first policy, then we are interested
in using simulation to estimate

θ = θ1 − θ2

where
θ1 = E[g(T)], θ2 = E[h(T)], T = (T1, . . . , Tn)

If we now generate the vector T to compute g(T), the question arises whether we
should use those same generated values to compute h(T) or whether it is more
efficient to generate an independent set to estimate θ2. To answer this question
suppose that we used T∗ = (T ∗

1 , . . . , T ∗
n), having the same distribution as T, to

estimate θ2. Then the variance of the estimator g(T) − h(T∗) of θ is

Var(g(T) − h(T∗)) = Var(g(T)) + Var(h(T∗)) − 2Cov(g(T), h(T∗))
= Var(g(T)) + Var(h(T)) − 2Cov(g(T), h(T∗)) (9.15)

Hence, if g(T) and h(T) are positively correlated—that is, if their covariance is
positive—then the variance of the estimator of θ is smaller if we use the same set
of generated random values T to compute both g(T) and h(T) than it would be if
we used an independent set T∗ to compute h(T∗) [in this latter case the covariance
in (9.15) would be 0].

Since both g and h are increasing functions of their arguments, it follows, because
increasing functions of independent random variables are positively correlated (see
the Appendix of this chapter for a proof), that in the above case it is more efficient
to successively compare the policies by always using the same set of generated job
times for both policies.

As a general rule of thumb when comparing different operating policies in
a randomly determined environment, after the environmental state has been
simulated one should then evaluate all the policies for this environment. That
is, if the environment is determined by the vector T and gi (T) is the return from
policy i under the environmental state T, then after simulating the value of the
random vector T one should evaluate, for that value of T, all the returns gi (T).

216 9 Variance Reduction Techniques

9.8 Evaluating an Exotic Option

With time 0 taken to be the current time, let P(y) denote the price of a stock at time
y. A common assumption is that a stock’s price evolves over time according to a
geometric Brownian motion process. This means that, for any price history up to
time y, the ratio of the price at time t+y to that at time y has a lognormal distribution
with mean parameter μt and variance parameter tσ 2. That is, independent of the
price history up to time y, the random variable

log

(
P(t + y)

P(y)

)

has a normal distribution with mean μt and variance tσ 2. The parameters μ and
σ are called, respectively, the drift and the volatility of the geometric Brownian
motion.

A European call option on the stock, having expiration time t and strike K, gives
its owner the right, but not the obligation, to purchase the stock at time t for a fixed
price K. The option will be exercised at time t provided that P(t) > K . Because
we are able to purchase a stock whose market price is P(t) for the price K, we say
that our gain in this case is P(t) − K . Thus, in general, the gain at time t from the
option is

(P(t) − K)+

where

x+ =
{

x, if x > 0
0, if x � 0

For a given initial price P(0) = v, let C(K , t, v) denote the expected value of the
payoff from a K , t European call option. Using that

W ≡ log(P(t)/v)

is a normal random variable with mean tμ and variance tσ 2, we have that

C(K , t, v) = E[(P(t) − K)+] = E[(veW − K)+]

It is not difficult to explicitly evaluate the preceding to obtain C(K , t, v).
The preceding option is called a standard (or vanilla) call option. In recent

years there has been an interest in nonstandard (or exotic) options. Among the
nonstandard options are the barrier options; these are options that only become
alive, or become dead, when a barrier is crossed. We will now consider a type of
barrier option, called an up-and-in option, that is specified not only by the price K
and time t, but also by an additional price b and an additional time s, s < t . The
conditions of this option are such that its holder only has the right to purchase the
stock at time t for price K if the stock’s price at time s exceeds b. In other words,

9.8 Evaluating an Exotic Option 217

the K , t option either becomes alive at time s if P(s) > b, or becomes dead if
P(s) � b. We now show how we can efficiently use simulation to find the expected
payoff of such an option.

Suppose that P(0) = v, and define X and Y by

X = log

(
P(s)

v

)
, Y = log

(
P(t)

P(s)

)

It follows from the properties of geometric Brownian motion that X and Y are
independent normal random variables, with X having mean sμ and variance sσ 2,
and Y having mean (t − s)μ and variance (t − s)σ 2. Because

P(s) = veX

P(t) = veX+Y

we can write the payoff from the option as

payoff = I (veX > b)(veX+Y − K)+

where

I (veX > b) =
{

1, if veX > b
0, if veX � b

Therefore, the payoff can be be simulated by generating a pair of normal random
variables. The raw simulation estimator would first generate X. If X is less than
log(b/v), that run ends with payoff value 0; if X is greater than log(b/v), then Y is
also generated and the payoff from that run is the value of (veX+Y − K)+.

We can, however, significantly improve the efficiency of the simulation by
a combination of the variance reduction techniques of stratified sampling and
conditional expectation. To do so, let R denote the payoff from the option, and
write

E[R] = E[R|veX > b]P{veX > b} + E[R|veX � b]P{veX � b}
= E[R|X > log(b/v)]P{X > log(b/v)}
= E[R|X > log(b/v)]�

(
log(b/v) − sμ

σ
√

s

)

where � = 1 − � is the standard normal tail distribution function. Therefore,
to obtain E[R] it suffices to determine its conditional expectation given that
X > log(b/v), which can be accomplished by first generating X conditional on
the event that it exceeds log(b/v). Suppose that the generated value is x (we will
show in the following how to generate a normal conditioned to exceed some value).
Now, rather than generating the value of Y to determine the simulated payoff, let
us take as our estimator the conditional expected payoff given the value of X.

218 9 Variance Reduction Techniques

This conditional expectation can be computed because, as X > log(b/v), the
option is alive at time s and thus has the same expected payoff as would a standard
option when the initial price of the security is veX and the option expires after
an additional time t − s. That is, after we simulate X conditional on it exceeding
log(b/v), we should use the following estimator for the expected payoff of the
barrier option:

Estimator = C(K , t − s, veX)�

(
log(b/v) − sμ

σ
√

s

)
(9.16)

After k simulation runs, with Xi being the generated value of the conditioned
normal on run i, the estimator is

�

(
log(b/v) − sμ

σ
√

s

)
1

k

k∑
i=1

C(K , t − s, veXi)

We now show how to generate X conditional on it exceeding log(b/v). Because
X can be expressed as

X = sμ + σ
√

s Z (9.17)

where Z is a standard normal random variable, this is equivalent to generating Z
conditional on the event that

Z > c ≡ log(b/v) − sμ

σ
√

s
(9.18)

Thus, we need to generate a standard normal conditioned to exceed c.
When c � 0, we can just generate standard normals until we obtain one larger

than c. The more interesting situation is when c > 0. In this case, an efficient
procedure is to use the rejection technique with g being the density function of
c + Y , where Y is an exponential random variable whose rate λ will be determined
in the following. The density function of c + Y is

g(x) = λe−λx eλc = λe−λ(x−c), x > c

whereas that of the standard normal conditioned to exceed c is

f (x) = 1√
2π �(c)

e−x2/2, x > c

Consequently,
f (x)

g(x)
= e−λceλx−x2/2

λ�(c)
√

2π

Because eλx−x2/2 is maximized when x = λ, we obtain that

max
x

f (x)

g(x)
� C(λ) ≡ eλ2/2−λc

λ�(c)
√

2π

9.8 Evaluating an Exotic Option 219

Calculus now shows that C(λ) is minimized when

λ = c + √
c2 + 4

2
Take the preceding to be the value of λ. Because

f (x)

C(λ)g(x)
= eλx−x2/2−λ2/2 = e−(x−λ)2/2

we see that the following algorithm generates a standard normal random variable
that is conditioned to exceed the positive value c.

1. Set λ = c+
√

c2+4
2 .

2. Generate U1 and set Y = − 1
λ

log(U1) and V = c + Y .
3. Generate U2.

4. If U2 � e−(V −λ)2/2 stop; otherwise return to 2.

The value of V obtained is distributed as a standard normal random variable that
is conditioned to exceed c > 0.

Remarks

• The preceding algorithm for generating a standard normal conditioned to
exceed c is very efficient, particularly when c is large. For instance, if c = 3
then λ ≈ 3.3 and C(λ) ≈ 1.04.

• The inequality in Step 4 can be rewritten as

− log(U2) � (V − λ)2/2

Using that − log(U2) is exponential with rate 1, and that conditional on an
exponential exceeding a value the amount by which it exceeds it is also
exponential with the same rate, it follows that not only does the preceding
algorithm yield a standard normal conditioned to exceed c, but it also gives
an independent exponential random variable with rate 1, which can then be
used in generating the next conditioned standard normal.

• Using that C(K , t, v), the expected payoff of a standard option, is an
increasing function of the stock’s initial price v, it follows that the estimator
given by (9.16) is increasing in X. Equivalently, using the representation of
Equation (9.17), the estimator (9.16) is increasing in Z. This suggests the use
of Z as a control variate. Because Z is generated conditional on the inequality
(9.18), its mean is

E[Z |Z > c] = 1√
2π �(c)

∫ ∞

c
xe−x2/2dx

= e−c2/2

√
2π �(c)

220 9 Variance Reduction Techniques

• The expected return from the barrier option can be expressed as a two-
dimensional integral involving the product of normal density functions.
This two-dimensional integral can then be evaluated in terms of the joint
probability distribution of random variables having a bivariate normal
distribution. However, for more general payoff functions than (P(t) − K)+,
such as power payoffs of the form [(P(t) − K)+]α , such expressions are not
available, and the simulation procedure described might be the most efficient
way to estimate the expected payoff. �

9.9 Appendix: Verification of Antithetic Variable Approach
When Estimating the Expected Value of Monotone Functions

The following theorem is the key to showing that the use of antithetic variables will
lead to a reduction in variance in comparison with generating a new independent set
of random numbers whenever the function h is monotone in each of its coordinates.

Theorem If X1, . . . , Xn are independent, then for any increasing functions f
and g of n variables

E[f (X)g(X)] � E[f (X)]E[g(X)] (9.19)

where X = (X1, . . . , Xn).

Proof The proof is by induction on n. To prove it when n = 1, let f and g be
increasing functions of a single variable. Then for any x and y

[f (x) − f (y)][g(x) − g(y)] � 0

since if x � y (x � y) then both factors are nonnegative (nonpositive). Hence, for
any random variables X and Y,

[f (X) − f (Y)][g(X) − g(Y)] � 0

implying that
E{[f (X) − f (Y)][g(X) − g(Y)]} � 0

or, equivalently

E[f (X)g(X)] + E[f (Y)g(Y)] � E[f (X)g(Y)] + E[f (Y)g(X)]

If we now suppose that X and Y are independent and identically distributed then,
as in this case,

E[f (X)g(X)] = E[f (Y)g(Y)]

E[f (X)g(Y)] = E[f (Y)g(X)] = E[f (X)]E[g(X)]

we obtain the result when n = 1.

9.9 Appendix: Verification of Antithetic Variable Approach 221

So assume that Equation (9.19) holds for n − 1 variables, and now suppose that
X1, . . . , Xn are independent and f and g are increasing functions. Then

E[f (X)g(X)|Xn = xn]

= E[f (X1, . . . , Xn−1, xn)g(X1, . . . , Xn−1, xn)|Xn = x]

= E[f (X1, . . . , Xn−1, xn)g(X1, . . . , Xn−1, xn)]

by independence

� E[f (X1, . . . , Xn−1, xn)]E[g(X1, . . . , Xn−1, xn)]

by the induction hypothesis

= E[f (X)|Xn = xn]E[g(X)|Xn = xn]

Hence,
E[f (X)g(X)|Xn] � E[f (X)|Xn]E[g(X)|Xn]

and, upon taking expectations of both sides,

E[f (X)g(X)] � E[E[f (X)|Xn]E[g(X)|Xn]]
� E[f (X)]E[g(X)]

The last inequality follows because E[f (X)|Xn] and E[g(X)|Xn] are both
increasing functions of Xn , and so, by the result for n = 1,

E[E[f (X)|Xn]E[g(X)|Xn]] � E[E[f (X)|Xn]]E[E[g(X)|Xn]]

= E[f (X)]E[g(X)] �

Corollary If h(x1, . . . , xn) is a monotone function of each of its arguments,
then, for a set U1, . . . , Un of independent random numbers,

Cov[h(U1, . . . , Un), h(1 − U1, . . . , 1 − Un)] � 0

Proof By redefining h we can assume, without loss of generality, that h is
increasing in its first r arguments and decreasing in its final n − r . Hence, letting

f (x1, . . . , xn) = h(x1, . . . , xr , 1 − xr+1, . . . , 1 − xn)

g(x1, . . . , xn) = −h(1 − x1, . . . , 1 − xr , xr+1, . . . , xn)

it follows that f and g are both increasing functions. Thus, by the preceding theorem,

Cov[f (U1, . . . , Un), g(U1, . . . , Un)] � 0

or, equivalently,

Cov[h(U1, . . . , Ur , 1 − Ur+1, . . . , 1 − Un),

h(1 − U1, . . . , 1 − Ur , Ur+1, . . . , Un)] � 0

222 9 Variance Reduction Techniques

The result now follows since the random vector h(U1, . . . , Un), h(1 − U1, . . . ,

1 − Un) has the same joint distribution as does the random vector

h(U1, . . . , Ur , 1 − Ur+1, . . . , 1 − Un),

h(1 − U1, . . . , 1 − Ur , Ur+1, . . . , Un)

Exercises

1. Suppose we wanted to estimate θ , where

θ =
∫ 1

0
ex2

dx

Show that generating a random number U and then using the estimator
eU2

(1 + e1−2U)/2 is better than generating two random numbers U1 and
U2 and using [exp(U 2

1) + exp(U 2
2)]/2.

2. Explain how antithetic variables can be used in obtaining a simulation
estimate of the quantity

θ =
∫ 1

0

∫ 1

0
e(x+y)2

dy dx

Is it clear in this case that using antithetic variables is more efficient than
generating a new pair of random numbers?

3. Let Xi , i = 1, . . . , 5, be independent exponential random variables each
with mean 1, and consider the quantity θ defined by

θ = P

{
5∑

i=1

i Xi � 21.6

}

(a) Explain how we can use simulation to estimate θ .
(b) Give the antithetic variable estimator.
(c) Is the use of antithetic variables efficient in this case?

4. Show that if X and Y have the same distribution then Var[(X + Y)/2] �
Var(X), and conclude that the use of antithetic variables can never increase
variance (although it need not be as efficient as generating an independent
set of random numbers).

5. (a) If Z is a standard normal random variable, design a study using antithetic
variables to estimate θ = E[Z 3eZ].

Exercises 223

(b) Using the above, do the simulation to obtain an interval of length no
greater than 0.1 that you can assert, with 95 percent confidence, contains
the value of θ .

6. Suppose that X is an exponential random variable with mean 1. Give
another random variable that is negatively correlated with X and that is also
exponential with mean 1.

7. Verify Equation (9.1).

8. Verify Equation (9.2).

9. Let Un, n � 1, be a sequence of independent uniform (0, 1) random variables.
Define

S = min(n : U1 + · · · + Un > 1)

It can be shown that S has the same distribution as does N in Example 9e,
and so E[S] = e. In addition, if we let

T = min(n : 1 − U1 + · · · + 1 − Un > 1)

then it can be shown that S + T has the same distribution as does N + M
in Example 9e. This suggests the use of (S + T + N + M)/4 to estimate e.
Use simulation to estimate Var(N + M + S + T)/4.

10. In certain situations a random variable X, whose mean is known, is simulated
so as to obtain an estimate of P{X � a} for a given constant a. The raw
simulation estimator from a single run is I, where

I =
{

1 if X � a
0 if X > a

Because I and X are clearly negative correlated, a natural attempt to reduce
the variance is to use X as a control—and so use an estimator of the form
I + c(X − E[X]).

(a) Determine the percentage of variance reduction over the raw estimator
I that is possible (by using the best c) if X were uniform on (0, 1).

(b) Repeat (a) if X were exponential with mean 1.
(c) Explain why we knew that I and X were negatively correlated.

11. Show that Var(αX + (1 − α)W) is minimized by α being equal to the value
given in Equation (9.3) and determine the resulting variance.

12. (a) Explain how control variables may be used to estimate θ in Exercise 1.
(b) Do 100 simulation runs, using the control given in (a), to estimate first

c∗ and then the variance of the estimator.

224 9 Variance Reduction Techniques

(c) Using the same data as in (b), determine the variance of the antithetic
variable estimator.

(d) Which of the two types of variance reduction techniques worked better
in this example?

13. Repeat Exercise 12 for θ as given in Exercise 2.

14. Repeat Exercise 12 for θ as given in Exercise 3.

15. Show that in estimating θ = E[(1 − U 2)1/2] it is better to use U 2 rather
than U as the control variate. To do this, use simulation to approximate the
necessary covariances.

16. Let Ui , i � 1, be independent uniform (0, 1) random variables and let

N = min(n : Un > .8).

(a) What is the distribution of N?
(b) Use Wald’s equation to find E[

∑N
i=1 Ui].

(c) What is E[Ui |N = n] when i < n?
(d) What is E[Un|N = n]?
(e) Verify the result of Wald’s equation by conditioning on N . That is, by

using

E[S] =
∞∑

n=1

E[S|N = n]P(N = n)

where S = ∑N
i=1 Ui .

17. Let X and Y be independent with respective distributions F and G and with
expected values μx and μy . For a given value t, we are interested in estimating
θ = P{X + Y � t}.
(a) Give the raw simulation approach to estimating θ .
(b) Use “conditioning” to obtain an improved estimator.
(c) Give a control variable that can be used to further improve upon the

estimator in (b).

18. Suppose that Y is a normal random variable with mean 1 and variance 1,
and suppose that, conditional on Y = y, X is a normal random variable with
mean y and variance 4. We want to use simulation to efficiently estimate
θ = P{X > 1}.
(a) Explain the raw simulation estimator.
(b) Show how conditional expectation can be used to obtain an improved

estimator.
(c) Show how the estimator of (b) can be further improved by using antithetic

variables.

Exercises 225

(d) Show how the estimator of (b) can be further improved by using a control
variable.

Write a simulation program and use it to find the variances of

(e) The raw simulation estimator.
(f) The conditional expectation estimator.
(g) The estimator using conditional expectation along with antithetic

variables.
(h) The estimator using conditional expectation along with a control

variable.
(i) What is the exact value of θ?

[Hint: Recall that the sum of independent normal random variables is also
normal.]

19. The number of casualty insurance claims that will be made to a branch office
next week depends on an environmental factor U. If the value of this factor
is U = u, then the number of claims will have a Poisson distribution with
mean 15

0.5+u . Assuming that U is uniformly distributed over (0, 1), let p denote
the probability that there will be at least 20 claims next week.

(a) Explain how to obtain the raw simulation estimator of p.
(b) Develop an efficient simulation estimator that uses conditional

expectation along with a control variable.
(c) Develop an efficient simulation estimator that uses conditional

expectation and antithetic variables.
(d) Write a program to determine the variance of the estimators in parts (a),

(b), and (c).

20. (The Hit–Miss Method.) Let g be a bounded function over the interval [0, 1]—
for e xample, suppose 0 � g(x) � b whenever 0 � x � 1—and suppose
we are interested in using simulation to approximate θ = ∫ 1

0 g(x) dx . The
hit–miss method for accomplishing this is to generate a pair of independent
random numbers U1 and U2. Now set X = U1, Y = bU2 so that the random
point (X, Y) is uniformly distributed in a rectangle of length 1 and height b.
Now set

I =
{

1 if Y < g(x)

0 otherwise

That is, I is equal to 1 if the random point (X, Y) falls within the shaded area
of Figure 9.4.

(a) Show that E[I] = [
∫ 1

0 g(x) dx]/b.
(b) Show that Var(bI) � Var(g(U)) and so the hit–miss estimator has a

larger variance than simply computing g of a random number.

226 9 Variance Reduction Techniques

0, b 1, b

1, 00, 0

g(x)

Figure 9.4. The Hit-Miss Method.

21. Let X1, . . . , Xn be independent and identically distributed continuous
random variables with distribution function F . Let Sn = X1 + . . . + Xn

and let Mn = max(X1, . . . , Xn). That is, let Sn and Mn be, respectively, the
sum and the maximum of the n values. Suppose we want to use simulation
to estimate θ = P(Sn > c).

(a) Show that θ = n P(Sn > c, Mn = Xn).

(b) Evaluate P(Sn > c, Mn = Xn|X1, . . . , Xn−1).
(c) Show that

max
x1,...,xn−1

P(Sn > c, Mn = Xn|Xi = xi , i � n − 1) = n P(X1 > c/n)

22. Suppose in the previous exercise that the random variables Xi are
nonnegative. With Sj = ∑ j

i=1 Xi and M j = max{Xi , i = 1, . . . , j}, let

R = min{n − 1, min(j � 1 : Sj + M j > c) }
Let E be the estimator

E = n P(Sn > c, Xn = Mn|R, X1, . . . , X R)

Show that

E =
{

n
n−R (1 − Fn−R(MR)) if R < n − 1

P(Sn > c, Mn = Xn|X1, . . . , Xn−1) if R = n − 1
(9.20)

Explain why E is a better estimator of θ than is P(Sn > c, Mn =
Xn|X1, . . . , Xn−1).

23. Suppose that customers arrive at a single-server queueing station in
accordance with a Poisson process with rate λ. Upon arrival they either enter

Exercises 227

service if the server is free or join the queue. Upon a service completion the
customer first in queue, if there are any customers in queue, enters service. All
service times are independent random variables with distribution G. Suppose
that the server is scheduled to take a break either at time T if the system is
empty at that time or at the first moment past T that the system becomes
empty. Let X denote the amount of time past T that the server goes on break,
and suppose that we want to use simulation to estimate E[X]. Explain how
to utilize conditional expectation to obtain an efficient estimator of E[X].

[Hint: Consider the simulation at time T regarding the remaining service
time of the customer presently in service and the number waiting in queue.
(This problem requires some knowledge of the theory of the M/G/1 busy
period.)]

24. Consider a single serve queue where customers arrive according to a Poisson
process with rate 2 per minute and the service times are exponentially
distributed with mean 1 minute. Let Ti denote the amount of time that
customer i spends in the system. We are interested in using simulation to
estimate θ = E[T1 + · · · + T10].

(a) Do a simulation to estimate the variance of the raw simulation estimator.
That is, estimate Var(T1 + · · · + T10).

(b) Do a simulation to determine the improvement over the raw estimator
obtained by using antithetic variables.

(c) Do a simulation to determine the improvement over the raw estimator
obtained by using

∑10
i=1 Si as a control variate, where Si is the ith service

time.
(d) Do a simulation to determine the improvement over the raw estimator

obtained by using
∑10

i=1 Si −∑9
i=1 Ii as a control variate, where Ii is the

time between the ith and (i + 1)st arrival.
(e) Do a simulation to determine the improvement over the raw estimator

obtained by using the estimator
∑10

i=1 E[Ti |Ni], where Ni is the number
in the system when customer i arrives (and so N1 = 0).

25. Repeat Exercise 10 of Chapter 5, this time using a variance reduction
technique as in Example 9m. Estimate the variance of the new estimator
as well as that of the estimator that does not use variance reduction.

26. In Example 9r, compute E[X |i] for i = 0, 1, 2.

27. Estimate the variance of the raw simulation estimator of the expected payoff
in the video poker model described in Example 9r. Then estimate the variance
using the variance reduction suggested in that e xample. What is your estimate
of the expected payoff? (If it is less than 1, then the game is unfair to the
player.)

228 9 Variance Reduction Techniques

28. In a certain game, the contestant can quit playing at any time and receive
a final reward equal to their score at that time. A contestant who does not
quit plays a game. If that game is lost, then the contestant must depart with
a final reward of 0; if the game is won, the contestant’s score increases by
a positive amount having distribution function F . Each game played is won
with probability p. A new contestant’s strategy is to continue to play until
her score exceeds a specified value c, at which point she will quit. Let R be
her final reward.

(a) If we want to use simulation to estimate E[R] by sequentially generating
random variables Ii , Xi , i = 1, . . . , where P(Ii = 1) = p =
1 − P(Ii = 0) and Xi has distribution F , when would a run end? and
what would be the estimator from a single run?

(b) Show how to improve the estimator in part (a) by giving a second
estimator that in each run generates only X1, . . . , X N where N =
min(n : X1 + . . . + Xn > c).

29. A knockout tournament involving n competitors, numbered 1 through n,

starts by randomly choosing two of the competitors to play a game, with
the loser of the game departing the tournament and the winner getting to
play another game against a randomly chosen remaining competitor. This
continues through n − 1 games, and the player who wins the final game is
declared the winner of the tournament. Whenever players i and j play against
each other, suppose that i wins with probability Pi, j , where Pi, j , i
= j,
are specified probabilities such that Pi, j + Pj,i = 1. Let Wi denote the
probability that i is the winner of the tournament. A simulation study has
been developed to estimate the probabilities W1, . . . , Wn. Each simulation
run begins by generating a random permutation of 1, . . . , n. If the random
permutation is I1, . . . , In, then contestants I1 and I2 play the first game, with
the winner being I1 if a generated random number is less than PI1,I2 , and
being I2 otherwise. The winner of the first game then plays I3, with the winner
of that game decided by the value of another random number, and so on. If
J is the winner in a simulation run, then the estimates of Wi from that run
are 0 for all i
= J, and 1 for i = J.

(a) Explain how conditional expectation can be used to improve the
estimator of Wi . Hint: Condition on the permutation and whatever other
information is needed to be able to determine the conditional probability
that i is the winner of the tournament.

(b) Explain how post-stratification, relating to the random permutation, can
be employed to further improve the estimator of Wi .

30. We proved that stratifying on Y always results in at least as great a reduction
in variance as would be obtained by using Y as a control. Does that imply
that in a simulation based on n runs it is always better to estimate E[h(U)]

Exercises 229

by stratifying on I, where I = i if i−1
n < U < i

n , rather than using U as a
control variable?

31. For the compound random vector estimator E of Section 9.5.3, show that

Var(E) � Var(gN (X1, . . . , X N))

Hint: Show that E is a conditional expectation estimator.

32. Suppose we want to use simulation to determine θ = E[h(Z1, . . . , Zn)]
where Z1, . . . , Zn are independent standard normal random variables, and
where h is an increasing function of each of its coordinates. Let W =∑n

i=1 ai Zi , where all the ai are nonnegative. Using the following lemma,
explain how we can use stratified sampling, stratifying on W, to approximate
θ . Assume that the inverse transform method will be used to simulate W.

Lemma. If the standard normal random variable Z is independent of X, a
normal random variable with mean μ and variance σ 2, then the conditional
distribution of Z given that Z + X = t is normal with mean t−μ

1+σ2 and variance
σ2

1+σ2 .

33. Explain how the approach of the preceding problem can be used when
h(x1, . . . , xn) is an increasing function of some of its variables, and a
decreasing function of the others.

34. Let X1, . . . , Xk be independent Bernoulli random variables with parameters
p1, . . . , pk . Show how you can use the recursion formula given in
Section 9.5.4 to generate X1, . . . , Xk conditional on

∑k
i=1 Xi = r.

35. If X is such that P{0 � X � a} = 1, show that

(a) E[X 2] � aE[X].
(b) Var(X) � E[X](a − E[X]).
(c) Var(X) � a2/4.

[Hint: Recall that max0�p�1 p(1 − p) = 1
4 .]

36. Suppose we have a “black box” which on command can generate the value
of a gamma random variable with parameters 3

2 and 1. Explain how we can
use this black box to approximate E[eX/(X +1)2], where X is an exponential
random variable with mean 1.

37. Suppose in Exercise 13 of Chapter 6 that we are interested in using simulation
to estimate p, the probability that the system fails by some fixed time t. If
p is very small, explain how we could use importance sampling to obtain a
more efficient estimator than the raw simulation one. Choose some values
for α, C , and t that make p small, and do a simulation to estimate the variance

230 9 Variance Reduction Techniques

of an importance sampling estimator as well as the raw simulation estimator
of p.

38. In Example 9y, Xi are independent exponentials with rates i/(i + 2), i =
1, 2, 3, 4. With Sj = ∑ j

i=1 Xi , that example was concerned with estimating

E[S4|S4 > 62] = E[S4 I {S4 > 62}]
E[I {S4 > 62}]

(a) Determine E[S4 I {S4 > 62}|S3 = x].
(b) Determine E[I {S4 > 62}|S3 = x].
(c) Explain how you can use the preceding to estimate E[S4|S4 > 62].
(d) Using the preceding, show that E[S4|S4 > 62] > 68.

39. Consider two different approaches for manufacturing a product. The profit
from these approaches depends on the value of a parameter α, and let vi (α)

denote the profit of approach i as a function of α. Suppose that approach 1
works best for small values of α in that v1(α) is a decreasing function of
α, whereas approach 2 works best for large values of α in that v2(α) is an
increasing function of α. If the daily value of α is a random variable coming
from the distribution F, then in comparing the average profit of these two
approaches, should we generate a single value of α and compute the profits
for this α, or should we generate α1 and α2 and then compute vi (αi), i = 1, 2?

40. Consider a list of n names, where n is very large, and suppose that a given
name may appear many times on the list. Let N (i) denote the number of
times the name in position i appears on the list, i = 1, . . . , n, and let θ

denote the number of distinct names on the list. We are interested in using
simulation to estimate θ .

(a) Argue that θ = ∑n
i=1

1
N (i) .

Let X be equally likely to be 1, . . . , n. Determine the name in position X
and go through the list starting from the beginning, stopping when you
reach that name. Let Y = 1 if the name is first reached at position X and
let Y = 0 otherwise. (That is, Y = 1 if the first appearance of the name
is at position X.)

(b) Argue that E[Y |N (X)] = 1
N (x)

.
(c) Argue that E[nY] = θ .
(d) Now, let W = 1 if position X is the last time that the name in that position

appears on the list, and let it be 0 otherwise. (That is, W = 1 if going
from the back to the front of the list, the name is first reached at position
X.) Argue that n(W + Y)/2 is an unbiased estimator of θ .

(e) Argue that if every name on the list appears at least twice, then the
estimator in (d) is a better estimator of θ than is (nY1 + nY2)/2 where
Y1 and Y2 are independent and distributed as is Y.

Bibliography 231

(f) Argue that n/(N (X)) has smaller variance than the estimator in (e),
although the estimator in (e) may still be more efficient when replication
is very high because its search process is quicker.

41. Let �−1(x) be the inverse function of the standard normal distribution
function �(x). Assuming that you can efficiently compute both �(x) and
�−1(x), show that you can generate a standard normal random variable X
that is conditioned to exceed c by generating a random number U, letting
Y = U + (1 − U)�(c), and setting

X = �−1(Y)

Explain how you could generate a standard normal random variable X that
is conditioned to lie between a and b.

Bibliography

Hammersley, J. M., and D. C. Handscomb, Monte Carlo Methods. Wiley, New York, 1964.
Hammersley, J. M., and K. W. Morton, “A New Monte Carlo Technique: Antithetic

Variables,” Proc. Cambridge Phil. Soc., 52, 449–474, 1956.
Lavenberg, S. S., and P. D. Welch, “A Perspective on the Use of Control Variables to Increase

the Efficiency of Monte Carlo Simulations,” Management Sci., 27, 322–335, 1981.
Morgan, B. J. T., Elements of Simulation. Chapman and Hall, London, 1983.
Ripley, B., Stochastic Simulation. Wiley, New York, 1986.
Ross, S. M., and K. Lin, “Applying Variance Reduction Ideas in Queuing Simulations,”

Probability Eng. Informational Sci., 15, 481–494, 2001.
Rubenstein, R. Y., Simulation and the Monte Carlo Method. Wiley, New York, 1981.
Siegmund, D., “Importance Sampling in the Monte Carlo Study of Sequential Tests,” Ann.

Statistics, 4, 673–684, 1976.

10Additional Variance
Reduction Techniques

Introduction

In this chapter we give some additional variation reduction techniques that are
not as standard as the ones in the previous chapter. Section 10.1 presents the
conditional Bernoulli sampling method which, when applicable, can be used to
estimate p, the probability that at least one of a specified set of events occurs.
The method is particularly powerful when p is small. Section 10.2 presents
the normalized importance sampling technique, which extends the importance
sampling idea to situations where the distribution of the random vector to be
generated is not completely specified. Section 10.3 introduces Latin Hypercube
sampling, a variance reduction technique inspired by the idea of stratified sampling.

10.1 The Conditional Bernoulli Sampling Method

The conditional Bernoulli sampling method (CBSM) is a powerful approach that
can often be used when estimating the probability of a union of events. That is,
suppose for given events A1, . . . , Am we are interested in using simulation to
estimate

p = P(∪m
i=1 Ai) = P(

m∑
i=1

Xi > 0),

where

Xi =
{

1, if Ai occurs
0, if otherwise.

Let λi = P(Xi = 1) = P(Ai). Assuming that λi is known for all i = 1, . . . , m
and that we are able to generate the values of X1, . . . , Xm conditional on a specified

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00010-3
© 2013 Elsevier Inc. All rights reserved. 233

http://dx.doi.org/10.1016/B978-0-12-415825-2.00010-3

234 10 Additional Variance Reduction Techniques

one of them being equal to 1, the CBSM will yield an unbiased estimator of p that
will have a small variance when

∑m
i=1 P(Ai) is small.

Before presenting the method we need some preliminary material. To begin,
let S = ∑m

i=1 Xi , and set λ = E[S] = ∑m
i=1 λi . Let R be an arbitrary random

variable, and suppose that I is independent of R, X1, . . . , Xm and is such that

P(I = i) = 1/m, i = 1, . . . , m

That is, I is a discrete uniform random variable on 1, . . . , m that is independent
of the other random variables.

The following identity is the key to the results of this section.

Proposition

(a) P{I = i |X I = 1} = λi/λ

(b) E[S R] = λE[R|X I = 1]
(c) P{S > 0} = λE

[
1
S |X I = 1

]

Proof To prove (a), note that

P{I = i |X I = 1} = P{X I = 1|I = i}P{I = i}∑
i P{X I = 1|I = i}P{I = i}

Now,

P{X I = 1|I = i} = P{Xi = 1|I = i}
= P{Xi = 1} by independence

= λi

which completes the proof of (a). To prove (b), reason as follows:

E[S R] = E

[
R
∑

i

Xi

]

=
∑

i

E[R Xi]

=
∑

i

{E[R Xi |Xi = 1]λi + E[R Xi |Xi = 0](1 − λi)}

=
∑

i

λi E[R|Xi = 1] (10.1)

10.1 The Conditional Bernoulli Sampling Method 235

Also,

E[R|X I = 1] =
∑

i

E[R|X I = 1, I = i]P{I = i |X I = 1}

=
∑

i

E[R|Xi = 1, I = i]λi/λ by (a)

=
∑

i

E[R|Xi = 1]λi/λ (10.2)

Combining Equations (10.1) and (10.2) proves (b).
To prove (c), define R to equal 0 if S = 0 and to equal 1/S if S > 0. Then,

E[S R] = P{S > 0} and E[R|X I = 1] = E

[
1

S

∣∣∣∣ X I = 1

]

and so (c) follows directly from (b).

Using the preceding proposition we are now in position to give the CBSM.

The Conditional Bernoulli Sampling Method for estimating
p = P(S > 0)

λi = P(Xi = 1) = 1 − P(Xi = 0), λ =
m∑

i=1

λi , S =
m∑

i=1

Xi .

1. Generate J such that P(J = i) = λi/λ, i = 1, . . . , m. Suppose the
generated value of J is j .

2. Set X j = 1
3. Generate the vector Xi , i �= j , conditional on X j = 1
4. Let S∗ = ∑m

i=1 Xi and return the unbiased estimator λ/S∗.

Note that because S∗ ≥ 1 it follows that

0 � λ/S∗ � λ

indicating (see Exercise 35 of Chapter 9) that

Var(λ/S∗) � λ2/4

236 10 Additional Variance Reduction Techniques

Remarks

(a) With I being equally likely to be any of the values 1, . . . , m, note that J is
distributed as I conditional on the event that X I = 1.

(b) As noted in the preceding, the CBSM estimator is always less than or equal
to λ, which is the Boole inequality bound on the probability of a union.
Provided that λ � 1 the CBSM estimator will have a smaller variance than
the raw simulation estimator.

(c) Typically, if p is small then λ is of the order of p. Consequently, the variance
of the CBSM estimator is typically of the order p2, whereas the variance of
the raw simulation estimator is p(1 − p) ≈ p.

(d) When m is not too large, the CBSM can be improved by using stratified
sampling. That is, if you are planning to do r simulation runs then there is
no need to generate the value of J . Either use proportional sampling and do
rλ j/λ runs using J = j for each j = 1, . . . , m, or, when practicable, do
a small simulation study to estimate the quantities σ 2

j = Var(1/S∗|J = j),

and then perform r
λ j σ j∑m
i=1 λi σi

runs using J = j, j = 1, . . . , m. Also, if the

simulation experiment is performed without any stratification then post-
stratiication should be considered. �

We will now use the CBSM to estimate (a) the probability that more than k coupons
are needed in the classical coupon collectors problem, (b) the failure probability of
a system, and (c) the probability that a specified pattern appears within a specified
time frame.

Example 10a The Coupon Collecting Problem Suppose there are
m types of coupons, and that each new coupon collected is type i with probability
pi ,
∑m

i=1 pi = 1. Let T be the number of coupons until our collection contains at
least one of each type, and suppose we are interested in estimating p = P(T > k)

when this probability is small. Let Ni , i = 1, . . . , m denote the number of type i
coupons among the first k collected and let Xi = I {Ni = 0} be the indicator of
the event that there are no type i coupons among the first k collected. Thus, with
S = ∑n

i=1 Xi

p = P(S > 0).

Let qi = 1 − pi , and set λi = P(Xi = 1) = qk
i and λ = ∑m

i=1 λi . Noting that the
conditional distribution of N1, . . . , Nm given that X j = 1 is that of a multinomial
with k trials where the probability that a trial outcome is i is pi/q j for i �= j and
is 0 for i = j , the CBSM is as follows:

1. Generate J such that P(J = i) = λi/λ, i = 1, . . . , m. Suppose the
generated value of J is j .

2. Generate the multinomial vector (N1, . . . , Nm) yielding the number of
outcomes of each type when k independent trials are performed, where the

10.1 The Conditional Bernoulli Sampling Method 237

probability of a type i trial outcome is 0 when i = j and is pi/q j when
i �= j .

3. Set Xi = I {Ni = 0}, i = 1, . . . , m
4. Let S∗ = ∑m

i=1 Xi and return the unbiased estimator λ/S∗.

The following table gives the variances of the CBSM and the raw simulation
estimator I = I {N > k} of P(N > k) for various values of k when pi =
i/55, i = 1, . . . , 10.

k P(N > k) Var(I) Var(λ/S∗)

50 0.54 0.25 0.026

100 0.18 0.15 0.00033

150 0.07 0.06 9 × 10−6

200 0.03 0.03 1.6 × 10−7

Moreover, the preceding estimator can be further improved by using both
stratified sampling and a control variable. For instance, suppose we plan to do
proportional stratification, setting J = j in rλ j/λ of these runs. Then in those
runs using J = j we can use S∗ as a control variable. Its conditional mean is

E[S∗|J = j] =
m∑

i=1

E[Xi |X j = 1] = 1 +
∑
i �= j

(1 − pi

q j
)k . �

Example 10b Consider the model of Example 9b, which is concerned with
a system composed of n independent components, and suppose that we want to
estimate the probability that the system is failed, when this probability is very
small. Now, for any system of the type considered in Example 9b there will always
be a unique family of sets {C1, . . . , Cm}, none of which is a subset of another, such
that the system will be failed if and only if all the components of at least one of
these sets are failed. These sets are called the minimal cut sets of the system.

Let Y j , j = 1, . . . , n equal 1 if component j is failed and let it equal 0 otherwise,
and let q j = P{Y j = 1} denote the probability that component j is failed. Now,
for i = 1, . . . , m, let

Xi =
∏
j∈Ci

Y j

That is, Xi is the indicator for the event that all components in Ci are failed. If we
let S = ∑

i Xi , then θ , the probability that the system is failed, is given by

θ = P{S > 0}
We will now show how to make use of the Conditional Bernoulli Sampling Method
to efficiently estimate θ .

238 10 Additional Variance Reduction Techniques

First, let λi = E[Xi] = ∏
j∈Ci

q j , and let λ = ∑
i λi . Now, simulate the value

of J , a random variable that is equal to i with probability λi/λ, i = 1, . . . , m.
Then set Yi equal to 1 for all i ∈ CJ , and simulate the value of all of the other
Yi , i /∈ C j , by letting them equal 1 with probability qi and 0 otherwise. Let S∗

denote the resulting number of minimal cut sets that have all their components
down, and note that S∗ ≥ 1. It then follows that λ/S∗ is an unbiased estimator of
θ . Since S∗ ≥ 1, it also follows that

0 � λ/S∗ � λ

and so when λ, the mean number of minimal cut sets that are down, is very small
the estimator λ/S∗ will have a very small variance.

For instance, consider a 3-of-5 system that fails if at least 3 of the 5 components
are failed, and suppose that each component independently fails with probability
q . For this system, the minimal cut sets will be the

(5
3

) = 10 subsets of size 3. Since
all the component failures are the same, the value of I will play no role. Thus, the
preceding estimate can be obtained by supposing that components 1, 2, and 3 are
all failed and then generating the status of the other two. Thus, by considering the
number of components 4 and 5 that are failed, it follows since λ = 10q3 that the
distribution of the estimator is

P{λ/S∗ = 10q3} = (1 − q)2

P{λ/S∗ = 10q3/4} = 2q(1 − q)

P{λ/S∗ = q3} = q2

Hence, with p = 1 − q ,

Var(λ/S∗) = E[(λ/S∗)2] − (E[λ/S∗])2

= 100q6[p2 + pq/8 + q2/100 − (p2 + pq/2 + q2/10)2]

The following table gives the value of θ and the ratio of Var(R) to the variance of
the estimator λ/S∗ for a variety of values of q , where Var(R) = θ(1 − θ) is the
variance of the raw simulation estimator.

q θ Var(R)/Var(λ/S∗)

0.001 9.985 × 10−9 8.896 × 1010

0.01 9.851 × 10−6 8,958,905

0.1 0.00856 957.72

0.2 0.05792 62.59

0.3 0.16308 12.29

Thus, for small q, Var(λ/S∗) is roughly of the order θ 2, whereas Var(R) ≈ θ . �

10.1 The Conditional Bernoulli Sampling Method 239

Example 10c Waiting for a Pattern Let Yi , i ≥ 1, be a sequence of
independent and identically distributed discrete random variables with probability
mass function Pj = P{Yi = j}. Let i1, . . . , ik be a fixed sequence of possible
values of these random variables and define

N = min{i :i ≥ k, Yi− j = ik− j , j = 0, 1, . . . , k − 1}
That is, N is the first time the pattern i1, . . . , ik occurs. We are interested in using
simulation to estimate θ = P{N � n}, in cases where θ is small. Whereas the usual
simulation estimator is obtained by simulating the sequence of random variables
until either the pattern occurs or it is no longer possible for it to occur by time n
(and letting the estimator for that run be 1 in the former case and 0 in the latter),
we will show how the CBSM can be applied to obtain a more efficient simulation
estimator.

To begin, let

Xi = 1 if Yi = ik, Yi−1 = ik−1, . . . , Yi−k+1 = i1

and let it be 0 otherwise. In other words, Xi is equal to 1 if the pattern occurs (not
necessarily for the first time) at time i . Let

S =
n∑

i=k

Xi

denote the number of times the pattern has occurred by time n and note that

θ = P{N � n} = P{S > 0}
Since, for k � i � n

λi = P{Xi = 1} = Pi1 Pi2 · · · Pik ≡ p

it follows by the CBSM that

θ = (n − k + 1)pE

[
1

S

∣∣∣∣ X I = 1

]

where I , independent of the Y j , is equally likely to be any of the values k, . . . , n.
Thus, we can estimate θ by first simulating J , equally likely to be any of the values
k, . . . , n, and setting

YJ = ik, YJ−1 = ik−1, . . . , YJ−k+1 = i1

We then simulate the other n − k values Yi according to the mass function Pj and
let S∗ denote the number of times the pattern occurs. The simulation estimator of
θ from this run is

θ̂ = (n − k + 1)p

S∗
For small values of (n − k + 1)p, the preceding will be a very efficient estimator
of θ . �

240 10 Additional Variance Reduction Techniques

10.2 Normalized Importance Sampling

Suppose we want to estimate θ = E[h(X)] where X is a random vector having
density (or mass) function f . The importance sampling technique is to generate
X from a density g having the property that g(x) = 0 implies that f (x) = 0,
and then taking h(X) f (X)/g(X)as the estimator of θ . That this is an unbiased
estimator follows from

θ = E f [h(X)] =
∫

h(x) f (x)d(x) =
∫

h(x)
f (x)

g(x)
g(x)d(x) = Eg

[
h(X)

f (X)

g(X)

]

If we now generate k such vectors X1, . . . , Xk from the density g then the
importance sampling estimator of θ based on these runs, call it θ̂im , is

θ̂im =
∑k

i=1 h(Xi) f (Xi)/g(Xi)

k

The normalized importance sampling estimator replaces the divisor k in the
preceding by

∑k
i=1 f (Xi)/g(Xi). That is, the normalized importance sampling

estimator, call it θ̂nim , is

θ̂nim =
∑k

i=1 h(Xi) f (Xi)/g(Xi)∑k
i=1 f (Xi)/g(Xi)

Although θ̂nimwill not be an unbiased estimator of θ it will be a consistent
estimator, meaning that with probability 1 it will converge to θ as the number
of runs k goes to infinity. That this is true is seen by dividing its numerator and
denominator by k to obtain

θ̂nim =
1
k

∑k
i=1 h(Xi) f (Xi)/g(Xi)

1
k

∑k
i=1 f (Xi)/g(Xi)

Now, by the strong law of large numbers

lim
k→∞

1

k

k∑
i=1

h(Xi) f (Xi)/g(Xi) = Eg[h(X) f (X)/g(X)] = E f [h(X)] = θ

and, again by the strong law of large numbers,

lim
k→∞

1

k

k∑
i=1

f (Xi)/g(Xi) = Eg[f (X)/g(X)] =
∫

f (x)

g(x)
g(x)d(x) =

∫
f (x)d(x) = 1

Hence, with probability 1, the numerator of θ̂nim converges to θ and the
denominator converges to 1, showing that θ̂nim converges to θ as k → ∞.

10.2 Normalized Importance Sampling 241

Remark We have previously seen the normalized importance sampling
technique. Indeed, it is equivalent to the technique used to obtain the Eq. (9.14)
estimator of θ = E f [h(X)|X ∈ A]. The estimator of (9.14) samples k random
vectors according to the density g and then uses the estimate∑k

i=1 h(Xi)I (Xi ∈ A) f (Xi)/g(Xi)∑k
i=1 I (Xi ∈ A) f (Xi)/g(Xi)

If we take A to be all of n-space then I (Xi ∈ A) ≡ 1, the problem becomes one
of estimating E f [h(X)], and the preceding estimator is the normalized importance
sampling estimator. �

An important feature of the normalized importance sampling estimator is that
it can be utilized in cases where the density function f is only known up to a
multiplicative constant. That is, for a known function f0(x) we may know that

f (x) = C f0(x)

where C−1 = ∫
f0(x) d(x) may be difficult to compute. Because

θ̂nim =
1
k

∑k
i=1 h(Xi) f0(Xi)/g(Xi)

1
k

∑k
i=1 f0(Xi)/g(Xi)

does not depend on the value of C , it can be used to estimate θ = E f [h(X)] even
when C is unknown.

Example 10d Let Xi , i = 1, . . . , r , be independent binomial random
variables with χi having parameters (ni , pi). Let n = ∑r

i=1 ni and S = ∑r
i=1 Xi ,

and suppose that we want to use simulation to estimate

θ = E[h(X1, . . . , Xr)|S = m]

where h is a specified function and where 0 < m < n. To start, suppose we
determine the conditional probability mass function of X1, . . . , Xr given that
S = m. For i1, . . . , ir being nonnegative integers that sum to m we have

P(X1 = i1, . . . , Xr = ir |S = m) = P(X1 = i1, . . . , Xr = ir)

P(S = m)

=

∏r
j=1

(
n j

i j

)
p

i j
j (1 − p j)

n j −i j

P(S = m)

However, because the p j need not be equal, it is difficult to compute P(S = m).
Thus, in essence the joint mass function under consideration is only known up to
a multiplicative constant.

242 10 Additional Variance Reduction Techniques

To get around this difficulty, let Yi , i = 1, . . . , r , be independent Binomial
random variables with Yi having parameters (ni , p). Using that Sy ≡ ∑r

i=1 Yi is
binomial with parameters (n, p), we see that for

∑r
j=1 i j = m

P(Y1 = i1, . . . , Yr = ir |Sy = m) =

∏r
j=1

(
n j

i j

)
pi j (1 − p)n j −i j

(
n
m

)
pm(1 − p)n−m

=

(
n1

i1

)(
n2

i2

)
· · ·
(

nr

ir

)
(

n
m

) (10.3)

The conditional distribution of Y1, . . . , Yr given that their sum is m is, therefore, that
of the numbers of balls of each of r types chosen when m balls are randomly chosen
from an urn consisting of n balls, of which ni are type i for each i = 1, . . . , r .
Consequently, given

∑r
i=1 Yi = m, the Yi can be generated sequentially, with

all the conditional distributions being hypergeometric. That is, the conditional
distribution of Y j given that Sy = m and Yi = yi , i = 1, . . . , j − 1 is that of a
hypergeometric distributed as the number of red balls chosen when m −∑ j−1

i=1 yi

balls are to be randomly chosen from an urn containing
∑r

i= j ni balls of which n j

are red.
Now, if we let

R(i1, . . . , ir) =
r∏

j=1

p
i j
j (1 − p j)

n j −i j

then

P(X1 = i1, . . . , Xr = ir |S = m)

P(Y1 = i1, . . . , Yr = ir |Sy = m)
=

(
n
m

)

P(S = m)
R(i1, . . . , ir)

Hence, we can estimate θ by generating k vectors Y1, . . . , Yk having the mass
function (10.3), and then using the estimator

θ̂nim =
∑k

i=1 h(Yi)R(Yi)∑k
i=1 R(Yi)

�

Example 10e Let Xi , i = 1, . . . , r be independent exponential random
variables with rates λi , i = 1, . . . , r , and suppose we want to estimate

θ = E[h(X1, . . . , Xr)|S = t]

10.2 Normalized Importance Sampling 243

for some specified function h, where S = ∑r
i=1 Xi . To start, let us determine

the conditional density function of X1, . . . , Xr−1 given that S = t . Calling this
conditional density function f , we have for positive values x1, . . . , xr−1 for which∑r−1

i=1 xi < t

f (x1, . . . , xr) = fX1,...,Xr−1(x1, . . . , xr−1|S = t)

= fX1,...,Xr (x1, . . . , xr−1, t −∑r−1
i=1 xi)

fS(t)

= λr e−λr (t−∑r−1
i=1 xi)

∏r−1
i=1 λi e−λi xi

fS(t)

= e−λr t e−∑r−1
i=1 (λi −λr)xi

∏r
i=1 λi

fS(t)

Now, with

h∗(x1, . . . , xr−1) = h(x1, . . . , xr−1, t −
r−1∑
i=1

xi),

r−1∑
i=1

xi < t

it follows that

θ = E[h(X1, . . . , Xr)|S = t] = E f [h∗(X1, . . . , Xr−1)]

However, because the λi need not be equal, it is difficult to compute fS(t) (which
would be a gamma density if the λi were equal), and so the density function f is,
in essence, only specified up to a multiplicative constant.

To make use of normalized importance sampling, let U1, . . . , Ur−1 be
independent uniform random variables on (0, t), and let U(1) < U(2) < . . . < U(r−1)

be their ordered values, Now, for 0 < y1 < . . . < yr−1 < t, U(i)will equal yi for all
i if U1, . . . , Ur−1 is any of the (r −1)! permutations of y1, . . . , yr−1. Consequently,

fU(1),...,U(r−1)
(y1, . . . , yr−1) = (r − 1)!

tr−1
, 0 < y1 < . . . < yr−1 < t

If we now let

X1 = U(1)

Xi = U(i) − U(i−1), i = 2, . . . , r − 1

then it is easy to check (the Jacobian of the transformation is 1) that g, the joint
density of X1, . . . , Xr−1, is

g(x1, . . . , xr−1) = (r − 1)!

tr−1
,

r−1∑
i=1

xi < t, all xi > 0

244 10 Additional Variance Reduction Techniques

It follows from the preceding that we can generate a random vector X1, . . . , Xr−1

having density g by generating r − 1 uniform (0, t) random variables, ordering
them, and then letting X1, . . . , Xr−1 be the differences of the successive ordered
values.

Now, for K = e
−λr t tr−1 ∏r

i=1 λi
(r−1)! fS (t) ,

f (x1, . . . , xr−1)

g(x1, . . . , xr−1)
= K e−∑r−1

i=1 (λi −λr)xi

Consequently, if for x = (x1, . . . , xr−1), we define

R(x) = e−∑r−1
i=1 (λi −λr)xi

then we can estimate θ by generating k vectors X1, . . . , Xk from the density g and
then using the estimator

θ̂nim =
∑k

i=1 h∗(Xi)R(Xi)∑k
i=1 R(Xi)

�

10.3 Latin Hypercube Sampling

Suppose we wanted to use simulation to compute θ = E[h(U1, . . . , Un)] where
h is an arbitrary function and U1, . . . , Un are independent uniform (0, 1) random
variables. That is, we want to compute

E[h(U1, . . . , Un)] =
∫ 1

0

∫ 1

0
. . .

∫ 1

0
h(x1, . . . , xn)dx1dx2 · · · dxn

The standard approach would be to generate some number, say r , successive n
vectors of independent uniform (0, 1) random variables:

U1 = (U1,1, U1,2, . . . , U1, j , . . . , U1,n)

U2 = (U2,1, U2,2, . . . , U2, j , . . . , U2,n)

. . . = . . .

Ui = (Ui,1, Ui,2, . . . , Ui, j , . . . , Ui,n)

. . . = . . .

Ur = (Ur,1, Ur,2, . . . , Ur, j , . . . , Ur,n)

then evaluate h at each of these vectors and use 1
r

∑r
i=1 h(Ui) as the simulation

estimator.
In the preceding, the values U1, j , U2, j , . . . , Ur, j taken for U j in the r successive

runs are independent and uniformly distributed on (0, 1). Intuitively, a better

10.3 Latin Hypercube Sampling 245

approach would be to stratify these r values so that exactly one of them is in
the interval (k−1

r , k
r) for each k = 1, . . . , r . It is also intuitive that after doing this

for each j = 1, . . . , n we would want to use the resulting nr values to make r n-
vectors in a random manner so as to avoid such things as having one of the vectors
consist of component values that are all uniformly distributed over (0, 1

r), and so
on. To accomplish this task note that if p1, . . . , pr is a permutation of 1, . . . , r then

U1 + p1 − 1

r
, . . . ,

Ui + pi − 1

r
, . . . ,

Ur + pr − 1

r

is a sequence of r independent random variables, one being uniform on (k−1
r , k

r) for
each k = 1, . . . , r . Using this fact, we can construct our r n-vectors by first gen-
erating n independent random permutations of 1, . . . , r . Denoting these random
permutations as (π1, j , π2, j , . . . , πr, j), j = 1, . . . , n, and letting U ∗

i, j = Ui, j +πi, j −1

r ,
the r vectors are U∗

i = (U ∗
i,1, U ∗

i,2, . . . , U ∗
i,n), i = 1, . . . , r . Evaluating the function

h at each of these vectors then yields the estimate of θ . That is, the estimate of θ

is θ̂ = 1
r

∑r
i=1 h(U∗

i) .
For instance, suppose that n = 2, r = 3. Then we start by generating the 3

vectors

U1 = (U1,1, U1,2)

U2 = (U2,1, U2,2)

U3 = (U3,1, U3,2)

Now we generate two random permutations of the values 1, 2, 3. Say they are (1,
3, 2) and (2, 3, 1). Then the resulting 3 vectors at which h is to be evaluated are

U∗
1 =

(
U1,1 + 0

3
,

U1,2 + 1

3

)

U∗
2 =

(
U2,1 + 2

3
,

U2,2 + 2

3

)

U∗
3 =

(
U3,1 + 1

3
,

U3,2 + 0

3

)

It is easy to see (see Problem 8) that U ∗
i, j is uniformly distributed over (0, 1).

Consequently, because U ∗
i,1, . . . , U ∗

i,n are independent, it follows that E[θ̂] = θ .
Although it is common that

Var(θ̂) � Var (h(U1, . . . , Un))

r

this need not always be the case. It is, however, always true when h is a monotone
function.

246 10 Additional Variance Reduction Techniques

Exercises

1. Use the conditional Bernoulli sampling method to estimate the probability that
the bridge structure given in Fig. 9.1 will fail if each of components 1, 2, 3
fail with probability 0.05 and each of components 4, 5 fail with probability
0.01. Assume that the component failure events are independent. Compare the
variance of your estimator with that of the raw simulation estimator.

2. Estimate the additional variance reduction that would be obtained in Example
1 if one uses a post-stratification.

3. Estimate the additional variance reduction that would be obtained in Example
1 if one uses antithetic variables.

4. Use the conditional Bernoulli sampling method to estimate the probability that a
run of 10 consecutive heads occurs within the first 50 flips of a fair coin. Compare
the variance of your estimator with that of the raw simulation estimator.

5. Use the conditional Bernoulli sampling method to estimate the probability that
the pattern HTHTH occurs within the first 20 flips of a coin that comes up heads
with probability .3.

6. Show that the normalized importance sampling technique can be applied when
both densities f and g are only known up to a multiplicative constant, provided
that one is able to generate from g

7. Give a procedure for determining E[X] when X has density function

f (x) = Cex+x2
, 0 < x < 1

8. If U is uniform on (0, 1) and π is equally likely to be any of 1, . . . , r , show that
U+π−1

r is uniform on (0, 1).

9. Let θ = E[e
∑10

i=1 Ui], where U1, . . . , U10 are independent uniform (0, 1) random
variables.

(a) Estimate θ by using a raw simulation estimator based on 100 runs. That is,
generate 100 independent sets of 10 random numbers and take the average
of the 100 resulting values of e raised to the sum of the 10 uniforms in each
run. Compare your estimate with the actual value θ = (e − 1)10 = 224.359.
Note how long it took the simulation to run.

(b) Repeat part (a) this time using the Latin hypercube procedure.

(c) Repeat parts (a) and (b) using different random numbers.

(d) Does the Latin hypercube procedure appear to yield an improvement over
raw simulation?

(e) What other variance reduction ideas could be used?

10. In the Latin hypercube sampling approach explain why it is only necessary to
generate n − 1, rather than n, random permutations.

11Statistical Validation
Techniques

Introduction

In this chapter we consider some statistical procedures that are useful in validating
simulation models. Sections 11.1 and 11.2 consider goodness of fit tests, which
are useful in ascertaining whether an assumed probability distribution is consistent
with a given set of data. In Section 11.1 we suppose that the assumed distribution
is totally specified, whereas in Section 11.2 we suppose that it is only specified up
to certain parameters—for example, it may be Poisson having an unknown mean.
In Section 11.3 we show how one can test the hypothesis that two separate samples
of data come from the same underlying population—as would be the case with
real and simulated data when the assumed mathematical model being simulated is
an accurate representation of reality. The results entation of reality. The results of
Section 11.3 are particularly useful in testing the validity of a simulation model. A
generalization to the case of many samples is also presented in this section. Finally,
in Section 11.4, we show how to use real data to test the hypothesis that the process
generating the data constitutes a nonhomogeneous Poisson process. The case of a
homogeneous Poisson process is also considered in this section.

11.1 Goodness of Fit Tests

One often begins a probabilistic analysis of a given phenomenon by hypothesizing
that certain of its random elements have a particular probability distribution. For
example, we might begin an analysis of a traffic network by supposing that the
daily number of accidents has a Poisson distribution. Such hypotheses can be
statistically tested by observing data and then seeing whether the assumption of

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00011-5
© 2013 Elsevier Inc. All rights reserved. 247

http://dx.doi.org/10.1016/B978-0-12-415825-2.00011-5

248 11 Statistical Validation Techniques

a particular probability distribution is consistent with these data. These statistical
tests are called goodness of fit tests.

One way of performing a goodness of fit test is to first partition the possible
values of a random quantity into a finite number of regions. A sample of values of
this quantity is then observed and a comparison is made between the numbers of
them that fall into each of the regions and the theoretical expected numbers when
the specified probability distribution is indeed governing the data.

In this section we consider goodness of fit tests when all the parameters of the
hypothesized distribution are specified; in the following section we consider such
tests when certain of the parameters are unspecified. We first consider the case of
a discrete and then a continuous hypothesized distribution.

The Chi-Square Goodness of Fit Test for Discrete Data

Suppose that n independent random variables—Y1, . . . , Yn—each taking on one of
the values 1, 2, . . . , k, are to be observed, and that we are interested in testing the
hypothesis that {pi , i = 1, . . . , k} is the probability mass function of these random
variables. That is, if Y represents any of the Y j , the hypothesis to be tested, which
we denote by H0 and refer to as the null hypothesis, is

H0 : P{Y = i} = pi , i = 1, . . . , k

To test the foregoing hypothesis, let Ni , i = 1, . . . , k, denote the number of the Y j ’s
that equal i. Because each Y j independently equals i with probability P{Y = i},
it follows that, under H0, Ni is binomial with parameters n and pi . Hence, when
H0 is true,

E[Ni] = npi

and so (Ni −npi)
2 is an indication as to how likely it appears that pi indeed equals

the probability that Y = i . When this is large, say, in relation to npi , then it is an
indication that H0 is not correct. Indeed, such reasoning leads us to consider the
quantity

T =
k∑

i=1

(Ni − npi)
2

npi

and to reject the null hypothesis when T is large.
Whereas small values of the test quantity T are evidence in favor of the

hypothesis H0, large ones are indicative of its falsity. Suppose now that the actual
data result in the test quantity T taking on the value t . To see how unlikely such a
large outcome would have been if the null hypothesis had been true, we define the
so-called p-value by

p-value = PH0{T � t}
where we have used the notation PH0 to indicate that the probability is to be
computed under the assumption that H0 is correct. Hence, the p-value gives the

11.1 Goodness of Fit Tests 249

probability that a value of T as large as the one observed would have occurred
if the null hypothesis were true. It is typical to reject the null hypothesis—saying
that it appears to be inconsistent with the data—when a small p-value results
(a value less than 0.05, or more conservatively, 0.01 is usually taken to be critical)
and to accept the null hypothesis—saying that it appears to be consistent with the
data—otherwise.

After observing the value—call it t—of the test quantity, it thus remains to
determine the probability

p-value = PH0{T � t}
A reasonably good approximation to this probability can be obtained by using
the classical result that, for large values of n, T has approximately a chi-square
distribution with k − 1 degrees of freedom when H0 is true. Hence,

p-value ≈ P
{

X 2
k−1 � t

}
(11.1)

where X 2
k−1 is a chi-square random variable with k − 1 degrees of freedom.

Example 11a Consider a random quantity which can take on any of the
possible values 1, 2, 3, 4, 5, and suppose we want to test the hypothesis that these
values are equally likely to occur. That is, we want to test

H0 : pi = 0.2, i = 1, . . . , 5

If a sample of size 50 yielded the following values of Ni :

12, 5, 19, 7, 7

then the approximate p-value is obtained as follows. The value of the test statistic
T is given by

T = 4 + 25 + 81 + 9 + 9

10
= 12.8

This yields
p-value ≈ P

{
X 2

4 > 12.8
} = 0.0122

For such a low p-value the hypothesis that all outcomes are equally likely would
be rejected. �

If the p-value approximation given by Equation (11.1) is not too small—say, of
the order of 0.15 or larger—then it is clear that the null hypothesis is not going to be
rejected, and so there is no need to look for a better approximation. However, when
the p-value is closer to a critical value (such as 0.05 or 0.01) we would probably
want a more accurate estimate of its value than the one given by the chi-square
approximate distribution. Fortunately, a more accurate estimator can be obtained
via a simulation study.

250 11 Statistical Validation Techniques

To effect the simulation study we need to generate N1, . . . , Nk , where Ni is
the number of Y1, . . . , Yn , independent random variables having mass function
{pi , i = 1, . . . , k}, that are equal to i , This can be accomplished in two different
ways. One way is to generate the values Y1, . . . , Yn and then use these values to
determine N1, . . . , Nk . Another way is to generate N1, . . . , Nk directly by first
generating N1, then generating N2 given the generated value of N1, and so on. This
is done by using that N1 is binomial with parameters (n, p1); that the conditional
distribution of N2 given that N1 = n1 is binomial with parameters (n − n1,

p2
1−p1

);
that the conditional distribution of N3 given that N1 = n1, N2 = n2 is binomial
with parameters (n − n1 − n2,

p3
1−p1−p2

), and so on. If n is much larger than k the
second approach is preferable.

The Kolmogorov_Smirnov Test for Continuous Data

Now consider the situation where Yi , . . . , Yn are independent random variables,
and we are interested in testing the null hypothesis H0 that they have the common
distribution function F , where F is a given continuous distribution function. One
approach to testing H0 is to break up the set of possible values of the Y j into k
distinct intervals, say,

(y0, y1), (y1, y2), . . . , (yk−1, yk), wherey0 = −∞, yk = +∞
and then consider the discretized random variables Y d

j , j = 1, . . . , n, defined by

Y d
j = i if Y j lies in the interval (yi−1, yi)

The null hypothesis then implies that

P
{
Y d

j = i
} = F(yi) − F(yi−1), i = 1, . . . , k

and this can be tested by the chi-square goodness of fit test already presented.
There is, however, another way of testing that the Y j come from the continuous

distribution function F which is generally more efficient than discretizing; it works
as follows. After observing Y1, . . . , Yn , let Fe be the empirical distribution function
defined by

Fe(x) = #i : Yi � x

n
That is, Fe(x) is the proportion of the observed values that are less than or equal to
x . Because Fe(x) is a natural estimator of the probability that an observation is less
than or equal to x , it follows that, if the null hypothesis that F is the underlying
distribution is correct, it should be close to F(x). Since this is so for all x , a natural
quantity on which to base a test of H0 is the test quantity

D ≡ Maximum
x

|Fe(x) − F(x)|
where the maximum is over all values of x from −∞ to +∞. The quantity D is
called the Kolmogorov–Smirnov test statistic.

11.1 Goodness of Fit Tests 251

To compute the value of D for a given data set Y j = y j , j = 1, . . . , n, let
y(1), y(2), . . . , y(n) denote the values of the y j in increasing order. That is,

y(j) = j th smallest of y1, . . . , yn

For example, if n = 3 and y1 = 3, y2 = 5, y3 = 1, then y(1) = 1, y(2) = 3, y(3) = 5.
Since Fe(x) can be written

Fe(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x < y(1)

1
n if y(1) � x < y(2)

...
j
n if y(j) � x < y(j+1)

...

1 if y(n) � x

we see that Fe(x) is constant within the intervals (y(j−1), y(j)) and then jumps by
1/n at the points y(1), . . . , y(n). Since F(x) is an increasing function of x which is
bounded by 1, it follows that the maximum value of Fe(x) − F(x) is nonnegative
and occurs at one of the points y(j), j = 1, . . . , n (see Figure 11.1). That is,

Maximum
x

{Fe(x) − F(x)} = Maximum
j=1,...,n

{
j

n
− F(y(j))

}
(11.2)

Similarly, the maximum value of F(x) − Fe(x) is also nonnegative and occurs
immediately before one of the jump points y(j), and so

Maximum
x

{F(x) − Fe(x)} = Maximum
j=1,...,n

{
F(y(j)) − (j − 1)

n

}
(11.3)

1

y(1) y(2) y(3) y(4) y(5)
x

F (x)

Fe(x)

Figure 11.1. n = 5.

252 11 Statistical Validation Techniques

From Equations (11.2) and (11.3) we see that

D = Maximum
x

|Fe(x) − F(x)|
= Maximum{Maximum{Fe(x) − F(x)}, Maximum{F(x) − Fe(x)}}
= Maximum

{
j

n
− F(y(j)), F(y(j)) − (j − 1)

n
, j = 1, . . . , n

}
(11.4)

Equation (11.4) can be used to compute the value of D.
Suppose now that the Y j are observed and their values are such that D = d .

Since a large value of D would appear to be inconsistent with the null hypothesis
that F is the underlying distribution, it follows that the p-value for this data set is
given by

p-value = PF{D � d}
where we have written PF to make explicit that this probability is to be computed
under the assumption that H0 is correct (and so F is the underlying distribution).

The above p-value can be approximated by a simulation that is made easier by
the following proposition, which shows that PF{D � d} does not depend on the
underlying distribution F . This result enables us to estimate the p-value by doing
the simulation with any continuous distribution F we choose [thus allowing us to
use the uniform (0,1) distribution].

Proposition PF{D � d} is the same for any continuous distribution F.

Proof

PF{D � d} = PF

{
Maximum

x

∣∣∣∣#i : Yi � x

n
− F(x)

∣∣∣∣ � d

}

= PF

{
Maximum

x

∣∣∣∣#i : F(Yi) � F(x)

n
− F(x)

∣∣∣∣ � d

}

= P

{
Maximum

x

∣∣∣∣#i : Ui � F(x)

n
− F(x)

∣∣∣∣ � d

}

where U1, . . . , Un are independent uniform (0, 1) random variables. The first
equality follows because F is an increasing function and so Y � x is equivalent
to F(Y) � F(x), and the second because of the result (whose proof is left as an
exercise) that if Y has the continuous distribution F then the random variable F(Y)

is uniform on (0, 1).
Continuing the above, we see, by letting y = F(x) and noting that as x ranges

from −∞ to +∞, F(x) ranges from 0 to 1, that

PF{D � d} = P

{
Maximum

0�y�1

∣∣∣∣#i : Ui � y

n
− y

∣∣∣∣ � d

}

11.1 Goodness of Fit Tests 253

which shows that the distribution of D, when H0 is true, does not depend on the
actual distribution F . �

It follows from the preceding proposition that after the value of D is determined
from the data, say, D = d , the p-value can be obtained by doing a simulation with
the uniform (0, 1) distribution. That is, we generate a set of n random numbers
U1, . . . , Un and then check whether or not the inequality

Maximum
0�y�1

∣∣∣∣#i : Ui � y

n
− y

∣∣∣∣ � d (11.5)

is valid. This is then repeated many times and the proportion of times that it is
valid is our estimate of the p-value of the data set. As noted earlier, the left side of
the inequality (11.5) can be computed by ordering the random numbers and then
using the identity

Max

∣∣∣∣#i : Ui � y

n
− y

∣∣∣∣ = Max

{
j

n
− U(j), U(j) − (j − 1)

n
, j = 1, . . . , n

}

where U(j) is the j th smallest value of U1, . . . , Un . For example, if n = 3 and
U1 = 0.7, U2 = 0.6, U3 = 0.4, then U(1) = 0.4, U(2) = 0.6, U(3) = 0.7 and the
value of D for this data set is

D = Max

{
1

3
− 0.4,

2

3
− 0.6, 1 − 0.7, 0.4, 0.6 − 1

3
, 0.7 − 2

3

}
= 0.4

Example 11b Suppose we want to test the hypothesis that a given population
distribution is exponential with mean 100; that is, F(x) = 1 − e−x/100. If the
(ordered) values from a sample of size 10 from this distribution are

66, 72, 81, 94, 112, 116, 124, 140, 145, 155

what conclusion can be drawn?
To answer the above, we first employ Equation (11.4) to compute the value of

the Kolmogorov–Smirnov test quantity D. After some computation this gives the
result D = 0.4831487. To obtain the approximate p-value we did a simulation
which gave the following output:

RUN
THIS PROGRAM USES SIMULATION TO APPROXIMATE THE

p-value OF THE KOLMOGOROV-SMIRNOV TEST
Random number seed (−32768 to 32767) ? 4567
ENTER THE VALUE OF THE TEST QUANTITY
? 0.4831487
ENTER THE SAMPLE SIZE

254 11 Statistical Validation Techniques

? 10
ENTER THE DESIRED NUMBER OF SIMULATION RUNS
? 500
THE APPROXIMATE p-value IS 0.012
OK

Because the p-value is so low (it is extremely unlikely that the smallest of a set
of 10 values from the exponential distribution with mean 100 would be as large as
66), the hypothesis would be rejected. �

11.2 Goodness of Fit Tests When Some Parameters Are
Unspecified

The Discrete Data Case

We can also perform a goodness of fit test of a null hypothesis that does not
completely specify the probabilities {pi , i = 1, . . . , k}. For example, suppose
we are interested in testing whether the daily number of traffic accidents in a
certain region has a Poisson distribution with some unspecified mean. To test this
hypothesis, suppose that data are obtained over n days and let Yi represent the
number of accidents on day i , for i = 1, . . . , n. To determine whether these data
are consistent with the assumption of an underlying Poisson distribution, we must
first address the difficulty that, if the Poisson assumption is correct, these data
can assume an infinite number of possible values. However, this is accomplished
by breaking up the set of possible values into a finite number of, say, k regions
and then seeing in which of the regions the n data points lie. For instance, if the
geographical area of interest is small, and so there are not too many accidents in
a day, we might say that the number of accidents in a given day falls in region
i, i = 1, 2, 3, 4, 5, when there are i − 1 accidents on that day, and in region 6
when there are 5 or more accidents. Hence, if the underlying distribution is indeed
Poisson with mean λ, then

pi = P{Y = i − 1} = e−λλi−1

(i − 1)! , i = 1, 2, 3, 4, 5

p6 = 1 −
4∑

j=0

e−λλ j

j!
(11.6)

Another difficulty we face in obtaining a goodness of fit test of the hypothesis that
the underlying distribution is Poisson is that the mean value λ is not specified.
Now, the intuitive thing to do when λ is unspecified is clearly to estimate its value
from the data—call λ̂ the estimate—and then compute the value of the test statistic

T =
k∑

i=1

(Ni − n p̂i)
2

n p̂i

11.2 Goodness of Fit Tests When Some Parameters 255

where Ni is the number of the Y j that fall in region i , and where p̂i is the estimated
probability, under H0, that Y j falls in region i, i = 1, . . . , k, which is obtained by
substituting λ̂ for λ in the expression (11.6).

The above approach can be used whenever there are unspecified parameters in
the null hypothesis that are needed to compute the quantities pi , i = 1, . . . , k.
Suppose now that there are m such unspecified parameters. It can be proved that,
for reasonable estimators of these parameters, when n is large the test quantity T
has, when H0 is true, approximately a chi-square distribution with k−1−m degrees
of freedom. (In other words, one degree of freedom is lost for each parameter that
needs to be estimated.)

If the test quantity takes on the value, say, T = t , then, using the above, the
p-value can be approximated by

p-value ≈ P
{

X 2
k−1−m � t

}
where X 2

k−1−m is a chi-square random variable with k −1−m degrees of freedom.

Example 11c Suppose that over a 30-day period there are 6 days in which
no accidents occurred, 2 in which 1 accident occurred, 1 in which 2 accidents
occurred, 9 in which 3 occurred, 7 in which 4 occurred, 4 in which 5 occurred, and
1 in which 8 occurred. To test whether these data are consistent with the hypothesis
of an underlying Poisson distribution, note first that since there were a total of 87
accidents, the estimate of the mean of the Poisson distribution is

λ̂ = 87

30
= 2.9

Since the estimate of P{Y = i} is thus e−2.9(2.9)i/ i!, we obtain that with the six
regions as given at the beginning of this section

p̂1 = 0.0500, p̂2 = 0.1596, p̂3 = 0.2312,

p̂4 = 0.2237, p̂5 = 0.1622, p̂6 = 0.1682

Using the data values N1 = 6, N2 = 2, N3 = 1, N4 = 9, N5 = 7, N6 = 5, we see
that the value of the test statistic is

T =
6∑

i=1

(Ni − 30 p̂i)
2

30 p̂i
= 19.887

To determine the p-value we run Program 9-1, which yields

p-value ≈ P
{

X 2
4 > 19.887

} = 0.0005

and so the hypothesis of an underlying Poisson distribution is rejected. �

256 11 Statistical Validation Techniques

We can also use simulation to estimate the p-value. However, since the null
hypothesis no longer completely specifies the probability model, the use of
simulation to determine the p-value of the test statistic is somewhat trickier than
before. The way it should be done is as follows.

(a) The Model. Suppose that the null hypothesis is that the data values Y1, . . . ,

Yn constitute a random sample from a distribution that is specified up to a set
of unknown parameters θ1, . . . , θm . Suppose also that when this hypothesis is
true, the possible values of the Yi are 1, . . . , k.

(b) The Initial Step. Use the data to estimate the unknown parameters. Specifically,
let θ̂ j denote the value of the estimator of θ j , j = 1, . . . , m. Now compute the
value of the test statistic

T =
k∑

i=1

(Ni − n p̂i)
2

n p̂i

where Ni is the number of the data values that are equal to i, i = 1, . . . , k,
and p̂i is the estimate of pi that results when θ̂ j is substituted for θ j , for
j = 1, . . . , m. Let t denote the value of the test quantity T .

(c) The Simulation Step. We now do a series of simulations to estimate the
p-value of the data. First note that all simulations are to be obtained by using
the population distribution that results when the null hypothesis is true and θ j

is equal to its estimate θ̂ j , j = 1, . . . , m, determined in step (b).
Simulate a sample of size n from the aforementioned population distribution

and let θ̂ j (sim) denote the estimate of θ j , j = 1, . . . , m, based on the simulated
data. Now determine the value of

Tsim =
k∑

i=1

[Ni − n p̂i (sim)]2

n p̂i (sim)

where Ni is the number of the simulated data values equal to i, i = 1, . . . , k,
and p̂i (sim) is the value of pi when θ j is equal to θ̂ j (sim), j = 1, . . . , m.

The simulation step should then be repeated many times. The estimate of the
p-value is then equal to the proportion of the values of Tsim that are at least as
large as t . �

Example 11d Let us reconsider Example 11c. The data presented in this
example resulted in the estimate λ̂ = 2.9 and the test quantity value T = 19.887.
The simulation step now consists of generating 30 independent Poisson random
variables each having mean 2.9 and then computing the value of

T ∗ ≡
6∑

i=1

(Xi − 30p∗
i)

2

30p∗
i

11.3 The Two-Sample Problem 257

where Xi is the number of the 30 values that fall into region i , and p∗
i is the

probability that a Poisson random variable with a mean equal to the average of
the 30 generated values would fall into region i . This simulation step should be
repeated many times, and the estimated p-value is the proportion of times it results
in a T ∗ at least as large as 19.887. �

The Continuous Data Case

Now consider the situation where we want to test the hypothesis that the random
variables Y1, . . . , Yn have the continuous distribution function Fθ , where θ =
(θ1, . . . , θm) is a vector of unknown parameters. For example, we might be
interested in testing that the Y j come from a normally distributed population.
To employ the Kolmogorov–Smirnov test we first use the data to estimate the
parameter vector θ , say, by the vector of estimators θ̂ . The value of the test statistic
D is now computed by

D = Maximum
x

|Fe(x) − Fθ̂(x)|

where Fθ̂ is the distribution function obtained from Fθ when θ is estimated by θ̂ .
If the value of the test quantity is D = d , then the p-value can be roughly

approximated by PF
θ̂
{D � d} = PU {D � d}. That is, after determining the value

of D, a rough approximation, which actually overestimates the p-value, is obtained.
If this does not result in a small estimate for the p-value, then, as the hypothesis is
not going to be rejected, we might as well stop. However, if this estimated p-value
is small, then a more accurate way of using simulation to estimate the true p-value
is necessary. We now describe how this should be done.

step 1: Use the data to estimate θ , say, by θ̂ . Compute the value of D as described
above.

step 2: All simulations are to be done using the distribution Fθ̂ . Generate a sample

of size n from this distribution and let θ̂ (sim) be the estimate of θ based
on this simulation run. Compute the value of

Maximum
x

|Fe,sim(x) − Fθ̂(sim)(x)|
where Fe,sim is the empirical distribution function of the simulated data;
and note whether it is at least as large as d . Repeat this many times and
use the proportion of times that this test quantity is at least as large as d as
the estimate of the p-value.

11.3 The Two-Sample Problem

Suppose we have formulated a mathematical model for a service system which
clears all its customers at the end of a day; moreover, suppose that our model

258 11 Statistical Validation Techniques

assumes that each day is probabilistically alike in that the probability laws for
successive days are identical and independent. Some of the individual assumptions
of the model—such as, for example, that the service times are all independent with
the common distribution G, or that the arrivals of customers constitute a Poisson
process—can be individually tested by using the results of Sections 11.1 and 11.2.
Suppose that none of these individual tests results in a particularly small p-value
and so all the parts of the model, taken individually, do not appear to be inconsistent
with the real data we have about the system. [We must be careful here in what we
mean by a small p-value because, even if the model is correct, if we perform a large
number of tests then, by chance, some of the resulting p-values may be small. For
example, if we perform r separate tests on independent data, then the probability
that at least one of the resulting p-values is as small as α is 1 − (1 − α)r , which
even for small α will become large as r increases.]

At this stage, however, we are still not justified in asserting that our model
is correct and has been validated by the real data; for the totality of the model,
including not only all the individual parts but also our assumptions about the ways
in which these parts interact, may still be inaccurate. One way of testing the model
in its entirety is to consider some random quantity that is a complicated function
of the entire model. For example, we could consider the total amount of waiting
time of all customers that enter the system on a given day. Suppose that we have
observed the real system for m days and let Yi , i = 1, . . . , m, denote the sum
of these waiting times for day i . If we now simulate the proposed mathematical
model for n days, we can let Xi , i = 1, . . . , n, be the sum of the waiting times
of all customers arriving on the (simulated) day i . Since the mathematical model
supposes that all days are probabilistically alike and independent, it follows that
all the random variables X1, . . . , Xm have some common distribution, which we
denote by F . Now if the mathematical model is an accurate representation of the
real system, then the real data Y1, . . . , Ym also have the distribution F . That is, if the
mathematical model is accurate, one should not be able to tell the simulated data
apart from the real data. From this it follows that one way of testing the accuracy of
the model in its entirety is to test the null hypothesis H0 that X1, . . . , Xn, Y1, . . . , Ym

are independent random variables having a common distribution. We now show
how such a hypothesis can be tested.

Suppose we have two sets of data—X1, . . . , Xn and Y1, . . . , Ym—and we want
to test the hypothesis H0 that these n + m random variables are all independent
and identically distributed. This statistical hypothesis testing problem is called the
two-sample problem.

To test H0, order the n + m values X1, . . . , Xn, Y1, . . . , Ym and suppose for
the time being that all n + m values are distinct and so the ordering is unique.
Now for i = 1, . . . , n, let Ri denote the rank of Xi among the n + m data values;
that is, Ri = j if Xi is the j th smallest among the n + m values. The quantity

R =
n∑

i=1

Ri

11.3 The Two-Sample Problem 259

equal to the sum of the ranks of the first data set, is used as our test quantity. (Either
of the two data sets can be considered as the “first” set.)

If R is either very large (indicating that the first data set tends to be larger than the
second) or very small (indicating the reverse), then this would be strong evidence
against the null hypothesis. Specifically, if R = r , we reject the null hypothesis if
either

PH0{R � r} or PH0{R � r}
is very low. Indeed, the p-value of the test data which results in R = r is given by

p-value = 2 Minimum(PH0{R � r}, PH0{R � r}) (11.7)

[It is twice the minimum of the probabilities because we reject either if R is too
small or too large. For example, suppose r∗ and r∗ were such that the probability,
under H0, of obtaining a value less (greater) than or equal to r ∗ (r∗) is 0.05. Since
the probability of either event occurring is, under H0, 0.1 it follows that if the
outcome is r∗ (or r∗) the p-value is 0.1.]

The hypothesis test resulting from the above p-value—that is, the test that calls
for rejection of the null hypothesis when the p-value is sufficiently small—is called
the two-sample rank sum test. (Other names that have also been used to designate
this test are the Wilcoxon two-sample test and the Mann–Whitney two-sample
test.)

Example 11e Suppose that direct observation of a system over 5 days has
yielded that a certain quantity has taken on the successive values

342, 448, 504, 361, 453

whereas a 10-day simulation of a mathematical model proposed for the system has
resulted in the following values:

186, 220, 225, 456, 276, 199, 371, 426, 242, 311

Because the five data values from the first set have ranks 8, 12, 15, 9, 13, it follows
that the value of the test quantity is R = 57. �

We can explicitly compute the p-value given in Equation (11.7) when n and m
are not too large and all the data are distinct. To do so let

Pn,m(r) = PH0{R � r}
Hence Pn,m(r) is the probability that from two identically distributed data sets of
sizes n and m, the sum of the ranks of the data values from the first set is less
than or equal to r . We can obtain a recursive equation for these probabilities by
conditioning on whether the largest data value comes from the first or the second
set. If the largest value is indeed contained in the first data set, the sum of the ranks
of this set equals n + m (the rank of the largest value) plus the sum of the ranks

260 11 Statistical Validation Techniques

of the other n − 1 values from this set when considered along with the m values
from the other set. Hence, when the largest is contained in the first data set, the
sum of the ranks of that set is less than or equal to r if the sum of the ranks of
the remaining n − 1 elements is less than or equal to r − n − m, and this is true
with probability Pn−1,m(r − n − m). By a similar argument we can show that if the
largest value is contained in the second set, the sum of the ranks of the first set is
less than or equal to r with probability Pn,m−1(r). Finally, since the largest value
is equally likely to be any of the n + m values, it follows that it is a member of
the first set with probability n/(n + m). Putting this together yields the following
recursive equation:

Pn,m(r) = n

n + m
Pn−1,m(r − n − m) + m

n + m
Pn,m−1(r) (11.8)

Starting with the boundary conditions

P1,0(k) =
{

0, k � 0
1, k > 0

and P0,1(k) =
{

0, k < 0
1, k � 0

Equation (11.8) can be recursively solved to obtain Pn,m(r) = PH0{R � r} and
Pn,m(r − 1) = 1 − PH0{R � r}.
Example 11f Five days of observation of a system yielded the following
values of a certain quantity of interest:

132, 104, 162, 171, 129

A 10-day simulation of a proposed model of this system yielded the values

107, 94, 136, 99, 114, 122, 108, 130, 106, 88

Suppose the formulated model implies that these daily values should be
independent and have a common distribution. To determine the p-value that results
from the above data, note first that R, the sum of the ranks of the first sample, is

R = 12 + 4 + 14 + 15 + 10 = 55

A program using the recursion (11.8) yielded the following output:

THIS PROGRAM COMPUTES THE p-value FOR THE TWO-SAMPLE
RANK SUM TEST

THIS PROGRAM WILL RUN FASTEST IF YOU DESIGNATE AS THE
FIRST

SAMPLE THE SAMPLE HAVING THE SMALLER SUM OF RANKS
ENTER THE SIZE OF THE FIRST SAMPLE
? 5

11.3 The Two-Sample Problem 261

ENTER THE SIZE OF THE SECOND SAMPLE
? 10
ENTER THE SUM OF THE RANKS OF THE FIRST SAMPLE
? 55
The p-value IS 0.0752579
OK �

The difficulty with employing the recursion (11.8) to compute the p-value is that
the amount of computation needed grows enormously as the sample sizes increase.
For example, if n = m = 20, even if we choose the test quantity to be the smaller
sum of ranks, then since the sum of all the ranks is 1 + 2 + · · · + 40 = 820, it is
possible that the test statistic could have a value as large as 410. Hence, there can
be as many as 20 × 20 × 410 = 164, 000 values of Pn,m(r) that would have to be
computed to determine the p-value. Thus, for large samples, the use of the recursion
provided by (11.8) may not be viable. Two different approximation methods that
can be used in such cases are (a) a classical approach based on approximating the
distribution of R and (b) simulation.

To use the classical approach for approximating the p-value we make use of the
fact that under H0 all possible orderings of the n + m values are equally likely.
Using this fact it is easy to show that

EH0 [R] = n
(n + m + 1)

2

VarH0(R) = nm
(n + m + 1)

12

Now it can be shown that, under H0, when n and m are large, R is approximately
normally distributed. Hence, when H0 is true,

R − n(n + m + 1)/2√
nm(n + m + 1)/12

is approximately a standard normal.

Because for a normal random variable W , the minimum of P{W�r} and P{W � r}
is the former when r � E[W], and the latter otherwise, it follows that when n and
m are not too small (both being greater than 7 should suffice), we can approximate
the p-value of the test result R = r by

p-value ≈
⎧⎨
⎩ 2 P{Z < r∗} if r � n

(n + m + 1)

2
2 P{Z > r∗} otherwise

(11.9)

where

r∗ =
r − n(n + m + 1)

2√
nm(n + m + 1)

12
and where Z is a standard normal random variable.

262 11 Statistical Validation Techniques

Example 11g Let us see how well the classical approximation works for the
data of Example 11g. In this case, since n = 5 and m = 10, we have that

p-value = 2 PH0{R � 55}

≈ 2 P

⎧⎨
⎩Z � 55 − 40√

50×16
12

⎫⎬
⎭

= 2 P{Z � 1.8371}
= 0.066

which should be compared with the exact answer 0.075. �

The p-value of the two-sample rank test can also be approximated by simulation.
To see how this is accomplished, recall that if the observed value of the test quantity
R is R = r , then the p-value is given by

p-value = 2 Minimum(PH0{R � r}, PH0{R � r})
Now, under H0, provided that all the n + m data values are distinct, it follows

that all orderings among these data values are equally likely, and thus the ranks of
the first data set of size n have the same distribution as a random selection of n of
the values 1, 2, . . . , n + m. Thus, under H0, the probability distribution of R can
be approximated by continually simulating a random subset of n of the integers
1, 2, . . . , n + m and determining the sum of the elements in the subset. The value
of PH0{R � r} can be approximated by the proportion of simulations that result
in a sum less than or equal to r , and the value of PH0{R � r} by the proportion of
simulations that result in a sum greater than or equal to r .

The above analysis supposes that all the n + m data values are distinct. When
certain of the values have a common value, one should take as the rank of a datum
value the average of the ranks of the values equal to it. For example, if the first
data set is 2, 3, 4 and the second 3, 5, 7, then the sum of the ranks of the first set
is 1 + 2.5 + 4 = 7.5. The p-value should be approximated by using the normal
approximation via Equation (11.9).

A generalization of the two-sample problem is the multisample problem, where
one has the following m data sets:

X1,1, X1,2, . . . , X1,n1

X2,1, X2,2, . . . , X2,n2
...

...
...

...

Xm,1, Xm,2, . . . , Xm,nm

and we are interested in testing the null hypothesis H0 that all the n =∑m
i=1 ni random variables are independent and have a common distribution.

11.4 Validating the Assumption of a Nonhomogeneous Poisson 263

A generalization of the two-sample rank test, called the multisample rank test
(or often referred to as the Kruskal–Wallis test), is obtained by first ranking all the
n data values. Then let Ri , i = 1, . . . , m, denote the sum of the ranks of all the ni

data values from the i th set. (Note that with this notation Ri is a sum of ranks and
not an individual rank as previously.) Since, under H0, all orderings are equally
likely (provided all the data values are distinct), it follows exactly as before that

E[Ri] = ni
(n + 1)

2

Using the above, the multisample rank sum test is based on the test quantity

R = 12

n(n + 1)

m∑
i=1

[Ri − ni (n + 1)/2]2

ni

Since small values of R indicate a good fit to H0, the test based on the quantity R
rejects H0 for sufficiently large values of R. Indeed, if the observed value of R is
R = y, the p-value of this result is given by

p-value = PH0{R � y}
This value can be approximated by using the result that for large values of
n1, . . . , nm , R has approximately a chi-square distribution with m − 1 degrees of
freedom [this latter result being the reason why we include the term 12/n(n + 1)

in the definition of R]. Hence, if R = y,

p-value ≈ P
{
χ 2

m−1 � y
}

Simulation can also be used to evaluate the p-value (see Exercise 14).
Even when the data values are not all distinct, the above approximation for the

p-value should be used. In computing the value of R the rank of an individual
datum value should be, as before, the average of all the ranks of the data equal to
it.

11.4 Validating the Assumption of a Nonhomogeneous Poisson
Process

Consider a mathematical model which supposes that the daily arrivals to a system
occur in accordance with a nonhomogeneous Poisson process, with the arrival
process from day to day being independent and having a common, but unspecified,
intensity function.

To validate such an assumption, suppose that we observe the system over r days,
noting the arrival times. Let Ni , i = 1, . . . , r , denote the number of arrivals on
day i , and note that if the arrival process is indeed a nonhomogeneous Poisson

264 11 Statistical Validation Techniques

process, then these quantities are independent Poisson random variables with the
same mean. Now whereas this consequence could be tested by using the goodness
of fit approach, as is done in Example 11a, we present an alternative approach that
is sometimes more efficient. This alternative approach is based on the fact that the
mean and variance of a Poisson random variable are equal. Hence, if the Ni are
indeed a sample from a Poisson distribution, the sample mean

N =
r∑

i=1

Ni

r

and the sample variance

S2 =
r∑

i=1

(Ni − N)2

r − 1

should be roughly equal. Motivated by this, we base our test of the hypothesis
H0 : Ni are independent Poisson random variables with a common mean

on the test quantity

T = S2

N
(11.10)

Because either a very small or very large value of T would be inconsistent with
H0, the p-value for the outcome T = t would be

p-value = 2 Minimum(PH0{T � t}, PH0{T � t})
However, since H0 does not specify the mean of the Poisson distribution, we cannot
immediately compute the above probabilities; rather, we must first use the observed
data to estimate the mean. By using the estimator N , it follows that if the observed
value of N is N = m, the p-value can be approximated by

p-value ≈ 2 Minimum(Pm{T � t}, Pm{T � t})
where T is defined by Equation (11.10) with N1, . . . , Nr being independent Poisson
random variables each with mean m. We can now approximate Pm{T � t} and
Pm{T � t} via a simulation. That is, we continually generate r independent
Poisson random variables with mean m and compute the resulting value of T .
The proportion of these for which T � t is our estimate of P{T � t}, and the
proportion for which T � t is our estimate of P{T � t}.

If the above p-value is quite small, we reject the null hypothesis that the daily
arrivals constitute a nonhomogeneous Poisson process. However, if the p-value
is not small, this only implies that the assumption that the number of arrivals
each day has a Poisson distribution is a viable assumption and does not by itself
validate the stronger assumption that the actual arrival pattern (as determined
by the nonhomogeneous intensity function) is the same from day to day. To
complete our validation we must now consider the actual arrival times for each

11.4 Validating the Assumption of a Nonhomogeneous Poisson 265

of the r days observed. Suppose that the arrival times on day j, j = 1, . . . , r ,
are X j,1, X j,2, . . . , X j,N j . Now if the arrival process is indeed a nonhomogeneous
Poisson process, it can be shown that each of these r sets of arrival times constitutes
a sample from a common distribution. That is, under the null hypothesis, the r sets
of data X j,1, . . . , X j,N j , j = 1, . . . , r , are all independent random variables from
a common distribution.

The above consequence, however, can be tested by the multisample rank test
given in Section 11.3. That is, first rank all the N ≡ ∑r

j=1 N j data values, and then
let R j denote the sum of the ranks of all the N j data values from the j th set. The
test quantity

R = 12

N (N + 1)

r∑
j=1

(
R j − N j

(N + 1)

2

)2

N j

can now be employed by using the fact that, when H0 is true, R has approximately
a chi-square distribution with r − 1 degrees of freedom. Hence, if the observed
value of R is R = y, the resulting p-value can be approximated by

p-value = 2 Minimum(PH0{R � y}, PH0{R � y})
≈ 2 Minimum

(
P
{

X 2
r−1 � y

}
, 1 − P

{
X 2

r−1 � y
})

where X 2
r−1 is a chi-square random variable with r − 1 degrees of freedom. (Of

course, we could also approximate the p-value by a simulation.) If the above
p-value, along with the previous p-value considered, is not too small, we may
conclude that the data are not inconsistent with our assumption that daily arrivals
constitute a nonhomogeneous Poisson process.

A Technical Remark Many readers may wonder why we used a two-sided
region to calculate the p-value in (11.11), rather than the one-sided region used in
the multisample rank sum test. It is because a multisample rank sum test assumes
that the data come from m distributions, and, because R is small when these
distributions are equal, a p-value based on a one-sided probability is appropriate.
However, in testing for a periodic nonhomogeneous Poisson process, we want to
test both that the arrival times on day i come from some distribution and that
this distribution is the same for all i . That is, we do not start by assuming, as
is done in the rank sum test, that we have data from a fixed number of separate
distributions. Consequently, a two-sided test is appropriate, because a very small
value of R might be indicative of some pattern of arrivals during a day, i.e.,
even though the number of arrivals each day might have the same Poisson
distribution, the daily arrival times might not be independent and identically
distributed. �

Example 11h Suppose that the daily times at which deliveries are made at
a certain plant are noted over 5 days. During this time the numbers of deliveries

266 11 Statistical Validation Techniques

during each of the days are as follows:

18, 24, 16, 19, 25

Suppose also that when the 102 delivery times are ranked according to the time of
day they arrived, the sums of the ranks of the deliveries from each day are

1010, 960, 1180, 985, 1118

Using the above data, let us test the hypothesis that the daily arrival process of
deliveries is a nonhomogeneous Poisson process.

We first test that the first data set of the daily number of deliveries consists of a
set of five independent and identically distributed Poisson random variables. Now
the sample mean and sample variance are equal to

N = 20.4 and S2 = 15.3

and so the value of the test quantity is T = 0.75. To determine the approximate
p-value of the test that the Ni are independent Poisson random variables, we
then simulated 500 sets of five Poisson random variables with mean 20.4 and
then computed the resulting value of T = S2/N . The output of this simulation
indicated a p-value of approximately 0.84, and so it is clear that the assumption that
the numbers of daily deliveries are independent Poisson random variables having
a common mean is consistent with the data.

To continue our test of the null hypothesis of a nonhomogeneous Poisson
process, we compute the value of the test quantity R, which is seen to be equal
to 14.425. Because the probability that a chi-square random variable with four
degrees of freedom is as large as 14.425 is 0.006, it follows that the p-value is
0.012, For such a small p-value we must reject the null hypothesis. �

If we wanted to test the assumption that a daily arrival process constituted
a homogeneous Poisson process, we would proceed as before and first test the
hypothesis that the numbers of arrivals each day are independent and identically
distributed Poisson random variables. If the hypothesis remains plausible after we
perform this test, we again continue as in the nonhomogeneous case by considering
the actual set of N = ∑r

j=1 N j arrival times. However, we now use the result
that under a homogeneous Poisson process, given the number of arrivals in a
day, the arrival times are independently and uniformly distributed over (0,T),
where T is the length of a day. This consequence, however, can be tested by
the Kolmogorov–Smirnov goodness of fit test presented in Section 11.1. That is,
if the arrivals constitute a homogeneous Poisson process, the N random variables
X j,i , i = 1, . . . , N j , j = 1, . . . , r , where X j,i represents the i th arrival time on day
j , can be regarded as constituting a set of N independent and uniformly distributed
random variables over (0,T). Hence, if we define the empirical distribution function
Fe by letting Fe(x) be the proportion of the N data values that are less than or equal

Exercises 267

to x—that is,

Fe(x) =
r∑

j=1

N j∑
i=1

I j,i

N

where

I j,i =
{

1 if X j,i � x
0 otherwise

then the value of the test quantity is

D = Maximum
0 � x � T

∣∣∣Fe(x) − x

T

∣∣∣
Once the value of the test statistic D is determined, we can then find the resulting
p-value by simulation, as is shown in Section 11.1.

If the hypothesis of a nonhomogeneous Poisson process is shown to be consistent
with the data, we face the problem of estimating the intensity functionλ(t), 0 � t �
T , of this process. [In the homogeneous case the obvious estimator is λ(t) = λ̂/T ,
where λ̂ is the estimate of the mean number of arrivals in a day of length T .] To
estimate the intensity function, order the N = ∑r

j=1 N j daily arrival times. Let
y0 = 0, and for k = 1, . . . , N , let yk denote the kth smallest of these N arrival
times. Because there has been a total of 1 arrival over r days within the time interval
(yk−1, yk), k = 1, . . . , N , a reasonable estimate of λ(t) would be

λ̂(t) = 1

r(yk − yk−1)
for yk−1 < t < yk

[To understand the above estimator, note that if λ̂(t) were the intensity function, the
expected number of daily arrivals that occur at a time point t such that yk−1 < t � yk

would be given by

E[N (yk) − N (yk−1)] =
∫ yk

yk−1

λ̂(t) dt = 1

r

and hence the expected number of arrivals within that interval over r days would
be 1, which coincides with the actual observed number of arrivals in that interval.]

Exercises

1. According to the Mendelian theory of genetics, a certain garden pea plant
should produce white, pink, or red flowers, with respective probabilities
1
4 ,

1
2 ,

1
4 . To test this theory a sample of 564 peas was studied with the result

that 141 produced white, 291 produced pink, and 132 produced red flowers.
Approximate the p-value of this data set

268 11 Statistical Validation Techniques

(a) by using the chi-square approximation, and
(b) by using a simulation.

2. To ascertain whether a certain die was fair, 1000 rolls of the die were
recorded, with the result that the numbers of times the die landed
i, i = 1, 2, 3, 4, 5, 6 were, respectively, 158, 172, 164, 181, 160, 165.
Approximate the p-value of the test that the die was fair

(a) by using the chi-square approximation, and
(b) by using a simulation.

3. Approximate the p-value of the hypothesis that the following 10 values are
random numbers: 0.12, 0.18, 0.06, 0.33, 0.72, 0.83, 0.36, 0.27, 0.77, 0.74.

4. Approximate the p-value of the hypothesis that the following data set of 14
points is a sample from a uniform distribution over (50, 200):

164, 142, 110, 153, 103, 52, 174, 88, 178, 184, 58, 62, 132, 128

5. Approximate the p-value of the hypothesis that the following 13 data values
come from an exponential distribution with mean 50:

86, 133, 75, 22, 11, 144, 78, 122, 8, 146, 33, 41, 99

6. Approximate the p-value of the test that the following data come from a
binomial distribution with parameters (8, p), where p is unknown:

6, 7, 3, 4, 7, 3, 7, 2, 6, 3, 7, 8, 2 1, 3, 5, 8, 7

7. Approximate the p-value of the test that the following data set comes from an
exponentially distributed population: 122, 133, 106, 128, 135, 126.

8. To generate the ordered values of n random numbers we could generate n
random numbers and then order, or sort, them. Another approach makes use
of the result that given that the (n + 1)st event of a Poisson process occurs at
time t , the first n event times are distributed as the set of ordered values of n
uniform (0, t) random variables. Using this result, explain why, in the following
algorithm, y1, . . . , yn denote the ordered values of n random numbers.

Generate n + 1 random numbers U1, . . . , Un+1

Xi = −log Ui , i = 1, . . . , n + 1

t =
n+1∑
i=1

Xi , c = 1

t

yi = yi−1 + cXi , i = 1, . . . , n (with y0 = 0)

Exercises 269

9. Let N1, . . . , Nk have a multinomial distribution with parameters n,

p1, . . . , pk,
∑k

i=1 pi = 1. With

T =
k∑

i=1

(Ni − npi)
2

npi

suppose we want to use simulation to estimate P(T > t). To reduce the
variance of the estimator what might be used as a control variable?

10. Suggest a variance reduction technique when using simulation to estimate
P(D > d) where D is the Kolmogorov-Smirnov statistic.

11. In Exercise 10, compute the approximate p-value based on

(a) the normal approximation, and
(b) a simulation.

12. Fourteen cities, of roughly equal size, are chosen for a traffic safety study.
Seven of them are randomly chosen, and in these cities a series of newspaper
articles dealing with traffic safety are run over a 1-month period. The numbers
of traffic accidents reported in the month following this campaign are as
follows:

Treatment group: 19 31 39 45 47 66 75

Control group: 28 36 44 49 52 72 72

Determine the exact p-value when testing the hypothesis that the articles have
not had any effect.

13. Approximate the p-value in Exercise 12

(a) by using the normal approximation, and
(b) by using a simulation.

14. Explain how simulation can be employed to approximate the p-value in the
multisample problem—that is, when testing that a set of m samples all come
from the same probability distribution.

15. Consider the following data resulting from three samples:
Compute the approximate p-value of the test that all the data come from a
single probability distribution

270 11 Statistical Validation Techniques

Sample 1: 121 144 158 169 194 211 242

Sample 2: 99 128 165 193 242 265 302

Sample 3: 129 134 137 143 152 159 170

(a) by using the chi-square approximation, and
(b) by using a simulation.

16. The number of daily arrivals over an 8-day interval are as follows:

122, 118, 120, 116, 125, 119, 124, 130

Do you think the daily arrivals could be independent and identically distributed
as nonhomogeneous Poisson processes?

17. Over an interval of length 100 there have been 18 arrivals at the following
times:

12, 20, 33, 44, 55, 56, 61, 63, 66, 70, 73, 75, 78, 80, 82, 85, 87, 90

Approximate the p-value of the test that the arrival process is a (homogeneous)
Poisson process.

Bibliography

Diaconis, P., and B. Efron, “Computer Intensive Methods in Statistics,” Sci. Am., 248(5),
96–109, 1983.

Fishman, G. S., Concepts and Methods in Discrete Event Digital Simulations. Wiley, New
York, 1973.

Kendall, M., and A. Stuart, The Advanced Theory of Statistics, 4th ed. MacMillan, New
York, 1979.

Mihram, G. A., Simulation—Statistical Foundations and Methodology. Academic Press,
New York, 1972.

Sargent, R. G., “A Tutorial on Validation and Verification of Simulation Models,” Proc.
1988 Winter Simulation Conf., San Diego, pp. 33–39, 1988.

Schruben, L. W., “Establishing the Credibility of Simulations,” Simulation, 34, 101–105,
1980.

12Markov Chain Monte
Carlo Methods

Introduction

It is, in general, very difficult to simulate the value of a random vector X whose
component random variables are dependent. In this chapter we present a powerful
approach for generating a vector whose distribution is approximately that of X. This
approach, called the Markov chain Monte Carlo method, has the added significance
of only requiring that the mass (or density) function of X be specified up to a
multiplicative constant, and this, we will see, is of great importance in applications.

In Section 12.1 we introduce and give the needed results about Markov chains.
In Section 12.2 we present the Hastings–Metropolis algorithm for constructing
a Markov chain having a specified probability mass function as its limiting
distribution. A special case of this algorithm, referred to as the Gibbs sampler,
is studied in Section 12.3. The Gibbs sampler is probably the most widely used
Markov chain Monte Carlo method. An application of the preceding methods to
deterministic optimization problems, known as simulated annealing, is presented
in Section 12.5. In Section 12.6 we present the sampling importance resampling
(SIR) technique. While not strictly a Markov chain Monte Carlo algorithm, it
also results in approximately simulating a random vector whose mass function is
specified up to a multiplicative constant.

12.1 Markov Chains

Consider a collection of random variables X0, X1, Interpret Xn as the “state of
the system at time n,” and suppose that the set of possible values of the Xn—that
is, the possible states of the system—is the set 1, . . . , N . If there exists a set of
numbers Pi j , i, j = 1, . . . , N , such that whenever the process is in state i then,

Simulation. DOI: http://dx.doi.org/10.1016/B978-0-12-415825-2.00012-7
© 2013 Elsevier Inc. All rights reserved. 271

http://dx.doi.org/10.1016/B978-0-12-415825-2.00012-7

272 12 Markov Chain Monte Carlo Methods

independent of the past states, the probability that the next state is j is Pi j , then we
say that the collection {Xn, n ≥ 0} constitutes a Markov chain having transition
probabilities Pi j , i, j = 1, . . . , N . Since the process must be in some state after it
leaves states i , these transition probabilities satisfy

N∑
j=1

Pi j = 1, i = 1, . . . , N

A Markov chain is said to be irreducible if for each pair of states i and j there
is a positive probability, starting in state i , that the process will ever enter state
j . For an irreducible Markov chain, let π j denote the long-run proportion of time
that the process is in state j . (It can be shown that π j exists and is constant, with
probability 1, independent of the initial state.) The quantities π j , j = 1, . . . , N ,
can be shown to be the unique solution of the following set of linear equations:

π j =
N∑

i=1

πi Pi j , j = 1, . . . , N
(12.1)N∑

j=1

π j = 1

Remark The set of Equations (12.2) have a heuristic interpretation. Since πi is
the proportion of time that the Markov chain is in state i and since each transition
out of state i is into state j with probability Pi j , it follows that πi Pi j is the proportion
of time in which the Markov chain has just entered state j from state i . Hence, the
top part of Equation (12.2) states the intuitively clear fact that the proportion of
time in which the Markov chain has just entered state j is equal to the sum, over
all states i , of the proportion of time in which it has just entered state j from state
i . The bottom part of Equation (12.2) says, of course, that summing the proportion
of time in which the chain is in state j , over all j , must equal 1. �

The {π j } are often called the stationary probabilities of the Markov chain. For
if the initial state of the Markov chain is distributed according to the {π j } then
P{Xn = j} = π j , for all n and j (see Exercise 1).

An important property of Markov chains is that for any function h on the state
space, with probability 1,

lim
n→∞

1

n

n∑
i=1

h(Xi) =
N∑

j=1

π j h(j) (12.2)

The preceding follows since if p j (n) is the proportion of time that the chain is in
state j between times 1, . . . , n then

1

n

n∑
i=1

h(Xi) =
N∑

j=1

h(j)p j (n) →
N∑

j=1

h(j)π j

12.1 Markov Chains 273

The quantity π j can often be interpreted as the limiting probability that the chain
is in state j . To make precise the conditions under which it has this interpretation,
we first need the definition of an aperiodic Markov chain.

Definition An irreducible Markov chain is said to be aperiodic if for some
n ≥ 0 and some state j ,

P{Xn = j |X0 = j} > 0 and P{Xn+1 = j |X0 = j} > 0

It can be shown that if the Markov chain is irreducible and aperiodic then

π j = lim
n→∞ P{Xn = j}, j = 1, . . . , N

There is sometimes an easier way than solving the set of Equations (12.1)
of finding the stationary probabilities. Suppose one can find positive numbers
x j , j = 1, . . . , N such that

xi Pi j = x j Pji , for i �= j,
N∑

j=1

x j = 1

Then summing the preceding equations over all states i yields

N∑
i=1

xi Pi j = x j

N∑
i=1

Pji = x j

which, since {π j , j = 1, . . . , N } is the unique solution of (12.1), implies that

π j = x j

When πi Pi j = π j Pji , for all i �= j , the Markov chain is said to be time reversible,
because it can be shown, under this condition, that if the initial state is chosen
according to the probabilities {π j }, then starting at any time the sequence of states
going backwards in time will also be a Markov chain with transition probabilities
Pi j .

Suppose now that we want to generate the value of a random variable X having
probability mass function P{X = j} = p j , j = 1, . . . , N . If we could generate an
irreducible aperiodic Markov chain with limiting probabilities p j , j = 1, . . . , N ,
then we would be able to approximately generate such a random variable by running
the chain for n steps to obtain the value of Xn , where n is large. In addition, if
our objective was to generate many random variables distributed according to
p j , j = 1, . . . , N , so as to be able to estimate E [h(X)] = ∑N

j=1 h(j)p j , then we
could also estimate this quantity by using the estimator 1

n

∑n
i=1 h(Xi). However,

since the early states of the Markov chain can be strongly influenced by the initial
state chosen, it is common in practice to disregard the first k states, for some

274 12 Markov Chain Monte Carlo Methods

suitably chosen value of k. That is, the estimator 1
n−k

∑n
i=k+1 h(Xi), is utilized.

It is difficult to know exactly how large a value of k should be used [although
the advanced reader should see Aarts and Korst (1989) for some useful results
along this line] and usually one just uses one’s intuition (which usually works fine
because the convergence is guaranteed no matter what value is used).

An important question is how to use the simulated Markov chain to estimate the
mean square error of the estimator. That is, if we let θ̂ = 1

n−k

∑n
i=k+1 h(Xi), how

do we estimate

MSE = E

⎡
⎣
(

θ̂ −
N∑

j=1

h(j)p j

)2
⎤
⎦

One way is the batch means method, which works as follows. Break up the n − k
generated states into s batches of size r , where s = (n − k)/r is integral, and let
Y j , j = 1, . . . , s be the average of the j th batch. That is,

Y j = 1

r

k+ jr∑
i=k+(j−1)r+1

h(Xi), j = 1, . . . , s

Now, treat the Y j , j = 1, . . . , s as if they were independent and identically
distributed with variance σ 2 and use their sample variance σ̂ 2 = ∑s

j=1(Y j − Y)2/

(s −1) as the estimator of σ 2. The estimate of MSE is σ̂ 2/s. The appropriate value
of r depends on the Markov chain being simulated. The closer Xi , i ≥ 1, is to
being independent and identically distributed, then the smaller should be the value
of r .

In the next two sections we will show, for a given set of positive numbers
b j , j = 1, . . . , N , how to construct a Markov chain whose limiting probabilities
are π j = b j/

∑N
i=1 bi , j = 1, . . . , N .

12.2 The Hastings_Metropolis Algorithm

Let b(j), j = 1, . . . , m be positive numbers, and B = ∑m
j=1 b(j). Suppose that

m is large and B is difficult to calculate, and that we want to simulate a random
variable (or a sequence of random variables) with probability mass function

π(j) = b(j)/B, j = 1, . . . , m

One way of simulating a sequence of random variables whose distributions
converge π(j), j = 1, . . . , m, is to find a Markov chain that is easy to simulate
and whose limiting probabilities are the π(j). The Hastings–Metropolis algorithm
provides an approach for accomplishing this task. It constructs a time-reversible
Markov chain with the desired limiting probabilities, in the following manner.

12.2 The Hastings_Metropolis Algorithm 275

Let Q be an irreducible Markov transition probability matrix on the integers
1, . . . , m, with q(i, j), representing the row i , column j element of Q. Now define
a Markov chain {Xn, n ≥ 0} as follows. When Xn = i , a random variable X such
that P{X = j} = q(i, j), j = 1, . . . , m, is generated. If X = j , then Xn+1 is set
equal to j with probability α(i, j) and is set equal to i with probability 1−α(i, j).
Under these conditions, it is easy to see that the sequence of states will constitute
a Markov chain with transition probabilities Pi, j given by

Pi, j = q(i, j)α(i, j), if j �= i

Pi,i = q(i, i) +
∑
k �=i

q(i, k)(1 − α(i, k))

Now this Markov chain will be time reversible and have stationary probabilities
π(j) if

π(i)Pi, j = π(j)Pj,i for j �= i

which is equivalent to

π(i)q(i, j)α(i, j) = π(j)q(j, i)α(j, i)

It is now easy to check that this will be satisfied if we take

α(i, j) = min

(
π(j)q(j, i)

π(i)q(i, j)
, 1

)
= min

(
b(j)q(j, i)

b(i)q(i, j)
, 1

)
(12.3)

[To check, note that if α(i, j) = π(j)q(j, i)/π(i)q(i, j) then α(j, i) = 1, and
vice versa.]

The reader should note that the value of B is not needed to define the
Markov chain, as the values b(j) suffice. Also, it is almost always the case that
π(j), j = 1, . . . , m, will not only be stationary probabilities but will also be
limiting probabilities. (Indeed, a sufficient condition is that Pi,i > 0 for some i .)

The following sums up the Hastings–Metropolis algorithm for generating a
time-reversible Markov chain whose limiting probabilities are π(j) = b(j)/B,

j = 1, . . . , m.

1. Choose an irreducible Markov transition probability matrix Q with transition
probabilities q(i, j), i, j = 1, . . . , m. Also, choose some integer value k
between 1 and m.

2. Let n = 0 and X0 = k.
3. Generate a random variable X such that P{X = j} = q(Xn, j) and generate

a random number U .
4. If U < [b(X)q(X, Xn)]/[b(Xn)q(Xn, X)], then N S = X ; else N S = Xn .
5. n = n + 1, Xn = N S.
6. Go to 3.

276 12 Markov Chain Monte Carlo Methods

Example 12a Suppose that we want to generate a random element from a
large complicated “combinatorial” set �. For instance, � might be the set of all
permutations (x1, . . . , xn) of the numbers (1, . . . , n) for which

∑n
j=1 j x j > a for

a given constant a; or � might be the set of all subgraphs of a given graph having the
property that for any pair of vertices i and j there is a unique path in the subgraph
from i to j (such subgraphs are called trees).

To accomplish our goal we will utilize the Hastings–Metropolis algorithm. We
shall start by assuming that one can define a concept of “neighboring” elements
of �, and we will then construct a graph whose set of vertices is � by putting an
arc between each pair of neighboring elements in �. For example, if � is the set
of permutations (x1, . . . , xn) for which

∑n
j=1 j x j > a, then we can define two

such permutations to be neighbors if one results from an interchange of two of the
positions of the other. That is (1, 2, 3, 4) and (1, 2, 4, 3) are neighbors, whereas (1,
2, 3, 4) and (1, 3, 4, 2) are not. If � is a set of trees, then we can say that two trees
are neighbors if all but one of the arcs of one of the trees are also arcs of the other
tree.

Assuming this concept of neighboring elements, we define the q transition
probability function as follows. With N (s) defined as the set of neighbors of s, and
|N (s)| equal to the number of elements in the set N (s), let

q(s, t) = 1

|N (s)| , if t ∈ N (s)

That is, the target next state from s is equally likely to be any of its neighbors. Since
the desired limiting probabilities of the Markov chain are π(s) = C , it follows
that π(s) = π(t), and so

α(s, t) = min(|N (s)|/|N (t)|, 1)

That is, if the present state of the Markov chain is s, then one of its neighbors is
randomly chosen—say it is t . If t is a state with fewer neighbors than s (in graph
theory language, if the degree of vertex t is less than that of vertex s), then the
next state is t . If not, a random number U is generated, and the next state is t if
U < |N (s)|/|N (t)|, and is s otherwise. The limiting probabilities of this Markov
chain are π(s) = 1/|�|. �

12.3 The Gibbs Sampler

The most widely used version of the Hastings–Metropolis algorithm is the Gibbs
sampler. Let X = (X1, . . . , Xn) be a random vector with probability mass function
(or probability density function in the continuous case) p(x) that need only be
specified up to a multiplicative constant, and suppose that we want to generate
a random vector whose distribution is that of X. That is, we want to generate a
random vector having mass function

p(x) = Cg(x)

12.3 The Gibbs Sampler 277

where g(x) is known, but C is not. Utilization of the Gibbs sampler assumes that
for any i and values x j , j �= i , we can generate a random variable X having the
probability mass function

P{X = x} = P{Xi = x |X j = x j , j �= i} (12.4)

It operates by using the Hastings–Metropolis algorithm on a Markov chain with
states x = (x1, . . . , xn), and with transition probabilities defined as follows.
Whenever the present state is x, a coordinate that is equally likely to be any of
1, . . . , n is chosen. If coordinate i is chosen, then a random variable X whose
probability mass function is as given by Equation (12.4) is generated, and if X = x
then the state y = (x1, . . . , xi−1, x, xi+1, . . . , xn) is considered as the candidate
next state. In other words, with x and y as given, the Gibbs sampler uses the
Hastings–Metropolis algorithm with

q(x, y) = 1

n
P{Xi = x |X j = x j , j �= i} = p(y)

n P{X j = x j , j �= i}
Because we want the limiting mass function to be p, we see from Equation (12.3)
that the vector y is then accepted as the new state with probability

α(x, y) = min

(
p(y)q(y, x)

p(x)q(x, y)
, 1

)

= min

(
p(y)p(x)

p(x)p(y)
, 1

)
= 1

Hence, when utilizing the Gibbs sampler, the candidate state is always accepted
as the next state of the chain.

Example 12b Suppose we want to generate n random points in the circle
of radius 1 centered at the origin, conditional on the event that no two points are
within a distance d of each other, where

β = P{no two points are within d of each other}
is assumed to be a small positive number. (If β were not small, then we could just
continue to generate sets of n random points in the circle, stopping the first time
that no two points in the set are within d of each other.) This can be accomplished
by the Gibbs sampler by starting with n points in the circle, x1, . . . , xn , such that
no two are within a distance d of each other. Then generate a random number U
and let I = Int(nU) + 1. Also generate a random point in the circle. If this point
is not within d of any of the other n −1 points excluding xI , then replace xI by this
generated point; otherwise, generate a new point and repeat the operation. After a
large number of iterations the set of n points will approximately have the desired
distribution. �

278 12 Markov Chain Monte Carlo Methods

Example 12c Queueing Networks Suppose that r individuals move
among m+1 queueing stations, and let, for i = 1, . . . , m, Xi (t) denote the number
of individuals at station i at time t . If

p(n1, . . . , nm) = lim
t→∞ P{Xi (t) = ni , i = 1, . . . , m}

then, assuming exponentially distributed service times, it can often be established
that

p(n1, . . . , nm) = C
m∏

i=1

Pi (ni), if
m∑

i=1

ni ≤ r

where Pi (n), n ≥ 0 is a probability mass function for each i = 1, . . . , m. Such a
joint probability mass function is said to have a product form.

Although it is often relatively straightforward both to establish that
p(n1, . . . , nm) has the preceding product form and to find the mass functions Pi ,
it can be difficult to explicitly compute the constant C . For even though

C
∑

n : s(n)≤r

m∏
i=1

Pi (ni) = 1

where n = (n1, . . . , nm) and s(n) = ∑m
i=1 ni , it can be difficult to utilize this

result. This is because the summation is over all nonnegative integer vectors n for

which
∑m

i=1 ni ≤ r and there are

(
r + m

m

)
such vectors, which is a rather large

number even when m and r are of moderate size.
Another approach to learning about p(n1, . . . , nm), which finesses the

computational difficulties of computing C , is to use the Gibbs sampler to generate
a sequence of values having a distribution approximately that of p.

To begin, note that if N = (N1, . . . , Nm) has the joint mass function p, then,
for n = 0, . . . , r −∑

k �=i nk ,

P{Ni = n|N1 = n1, . . . , Ni−1 = ni−1, Ni+1 = ni+1, . . . , Nm = nm}
= p(n1, . . . , ni−1, n, ni+1, . . . , nm)∑

j p(n1, . . . , ni−1, j, ni+1, . . . , nm)

= Pi (n)∑
j Pi (j)

where the preceding sum is over all j = 0, . . . , r −∑
k �=i nk . In other words, the

conditional distribution of Ni given the values of N j , j �= i , is the same as the
conditional distribution of a random variable having mass function Pi given that
its value is less than or equal to r −∑

j �=i N j .
Thus, we may generate the values of a Markov chain whose limiting probability

mass function is p(n1, . . . , nm) as follows:

12.3 The Gibbs Sampler 279

1. Let (n1, . . . , nm) be arbitrary nonnegative integers satisfying
∑

i ni ≤ r .
2. Generate U and let I = Int(mU + 1).
3. If I = i , let Xi have mass function Pi and generate a random variable

N whose distribution is the conditional distribution of Xi given that Xi ≤
r −∑

j �=i n j .
4. Let ni = N and go to 2.

The successive values of (n1, . . . , nm) constitute the sequence of states of a Markov
chain with the limiting distribution p. All quantities of interest concerning p can
be estimated from this sequence. For instance, the average of the values of the
j th coordinate of these vectors will converge to the mean number of individuals
at station j , the proportion of vectors whose j th coordinate is less than k will
converge to the limiting probability that the number of individuals at station j is
less than k, and so on. �

Example 12d Let Xi , i = 1, . . . , n, be independent random variables with
Xi having an exponential distribution with rate λi , i = 1, . . . , n. Let S = ∑n

i=1 Xi

and suppose we want to generate the random vector X = (X1, . . . , Xn) conditional
on the event that S > c for some large positive constant c. That is, we want to
generate the value of a random vector whose density function is given by

f (x1, . . . , xn) = 1

P{S > c}
n∏

i=1

λi e
−λi xi , if

n∑
i=1

xi > c

This is easily accomplished by starting with an initial vector x = (x1, . . . , xn)

satisfying xi > 0, i = 1, . . . , n, and
∑n

i=1 xi > c. Then generate a random
number U and set I = Int(nU + 1). Suppose that I = i . Now, we want to
generate an exponential random variable X with rate λi conditioned on the event
that X + ∑

j �=i x j > c. That is, we want to generate the value of X conditional
on the event that it exceeds c −∑

j �=i x j . Hence, using the fact that an exponential
conditioned to be greater than a positive constant is distributed as the constant plus
the exponential, we see that we should generate an exponential random variable Y
with rate λi (say, let Y = −1/λi log U), and set

X = Y +
(

c −
∑
j �=i

x j

)+

where b+ is equal to b when b > 0 and is 0 otherwise. The value of xi should then
be reset to equal X and a new iteration of the algorithm begun. �

Suppose now that we interested in estimating

α = P{h(X) > a}

280 12 Markov Chain Monte Carlo Methods

where X = (X1, . . . , Xn) is a random vector, h is an arbitrary function of X, and
α is very small. Because a generated value of h(X) will almost always be less than
a, it would take a huge amount of time to obtain an estimator whose error is small
relative to α if we use a straightforward Gibbs sampler approach to generate a
sequence of random vectors whose distribution converges to that of X. Consider,
however, the following approach.

To begin, note that for values −∞ = a0 < a1 < a2 < · · · < ak = a,

α =
k∏

i=1

P{h(X) > ai |h(X) > ai−1}

Thus, we can obtain an estimator of α by taking the product of estimators of the
quantities P{h(X) > ai |h(X) > ai−1}, for i = 1, . . . , k. For this to be efficient,
the values ai , i = 1, . . . , k, should be chosen so that P{h(X) > ai |h(X) > ai−1}
are all of moderate size.

To estimate P{h(X) > ai |h(X) > ai−1}, we make use of the Gibbs sampler as
follows.

1. Set J = N = 0.
2. Choose a vector x such that h(x) > ai−1.
3. Generate a random number U and set I = Int(nU) + 1.
4. If I = k, generate X having the conditional distribution of Xk given that

X j = x j , j �= k.
5. If h(x1, . . . , xk−1, X, xk+1, . . . , xn) ≤ ai−1, return to 4.
6. N = N + 1, xk = X .
7. If h(x1, . . . , xn) > ai then J = J + 1.
8. Go to 3.

The ratio of the final value of J to that of N is the estimator of P{h(X) > ai |h(X) >

ai−1}.

Example 12e Suppose in the queueing network model of Example 12d that
the service times at server i are exponential with rate μi , i = 1, . . . , m + 1, and
that when a customer completes service at server i then, independent of all else,
that customer then moves over to join the queue (or enter service if the server is
free) at server j with probability Pi j , where

∑m+1
j=1 Pi j = 1. It can then be shown

that the limiting probability mass function of the number of customers at servers
1, . . . , m is given, for

∑m
j=1 n j ≤ r , by

p(n1, . . . , nm) = C
m∏

j=1

(
π jμm+1

πm+1μ j

)n j

12.3 The Gibbs Sampler 281

where π j , j = 1, . . . , m + 1, are the stationary probabilities of the Markov chain
with transition probabilities Pi j . That is, they are the unique solution of

π j =
m+1∑
i=1

πi Pi j

m+1∑
j=1

π j = 1

If we renumber the servers so that max(π j/μ j) = πm+1/μm+1, then letting
a j = π jμm+1/πm+1μ j , we have that for

∑m
j=1 n j ≤ r ,

p(n1, . . . , nm) = C
m∏

j=1

(a j)
n j

where 0 ≤ a j ≤ 1. It easily follows from this that the conditional distribution of
the number of customers at server i , given the numbers n j , j �= i , at the other
m − 1 servers, is distributed as the conditional distribution of −1 plus a geometric
random variable with parameter 1 − ai , given that the geometric is less than or
equal to r + 1 −∑

j �=i n j .
In the case where the π j and μ j are both constant for all j , the conditional

distribution of the number of customers at server i , given the numbers n j , j �= i ,
at the other servers excluding server m + 1, is the discrete uniform distribution
on 0, 1, . . . , r − ∑

j �=i n j . Suppose this is the case and that m = 20, r = 100,
and that we are interested in estimating the limiting probability that the number
of customers at server 1—call it X1—is greater than 18. Letting t0 = −1, t1 = 5,

t2 = 9, t3 = 12, t4 = 15, t5 = 17, t6 = 18, we can use the Gibbs sampler to
successively estimate the quantities P{X1 > ti |X1 > ti−1}, i = 1, 2, 3, 4, 5, 6. We
would estimate, say P{X1 > 17|X1 > 15}, by starting with a vector n1, . . . , n20

for which n1 > 15 and s = ∑20
i=1 ni ≤ 100. We then generate a random number

U and let I = Int(20U + 1). A second random number V is now generated. If
I = 1, then n1 is reset to

n1 = Int((85 − s + n1)V) + 16

If I �= 1, then n1 is reset to

n1 = Int((101 − s + n1)V)

The next iteration of the algorithm then begins; the fraction of iterations for which
n1 > 17 is the estimate of P{X1 > 17|X1 > 15}. �

The idea of writing a small probability as the product of more moderately sized
conditional probabilities and then estimating each of the conditional probabilities

282 12 Markov Chain Monte Carlo Methods

in turn does not require that the Gibbs sampler be employed. Another variant of
the Hastings–Metropolis algorithm might be more appropriate. We illustrate by an
example that was previously treated, in Example 9v, by using importance sampling.

Example 12f Suppose that we are interested in estimating the number of
permutations x = (x1, . . . , xn) for which t (x) > a, and where t (x) = ∑n

j=1 j x j

and where a is such that this number of permutations is very small in comparison
to n!. If we let X = (X1, . . . , Xn) be equally likely to be any of the n! permutations
and set

α = P{T (X) > a}
then α is small and the quantity of interest is αn!. Letting 0 = a0 < a1 < · · · <

ak = a, we have that

α =
k∏

i=1

P{T (X) > ai |T (X) > ai−1}

To estimate P{T (X) > ai |T (X) > ai−1} we use the Hastings–Metropolis
algorithm as in Examples 12a or 12b to generate a Markov chain whose limiting
distribution is

π(x) = 1

Ni−1
, if T (x) > ai−1

where Ni−1 is the number of permutations x such that T (x) > ai−1. The proportion
of the generated states x of this Markov chain that have T (x) > ai is the estimate
of P{T (X) > ai |T (X) > ai−1}. �

In many applications it is relatively easy to recognize the form of the conditional
distributions needed in the Gibbs sampler.

Example 12g Suppose that for some nonnegative function h(y, z) the joint
density of the nonnegative random variables X, Y , and Z is

f (x, y, z) = Cx y−1(1 − x)zyh(y, z), for 0 < x < 0.5

Then the conditional density of X given that Y = y and Z = z is

f (x |y, z) = f (x, y, z)

fY,Z (y, z)

Since y and z are fixed and x is the argument of this conditional density, we can
write the preceding as

f (x |y, z) = C1 f (x, y, z)

where C1 does not depend on x . Hence, we have that

f (x |y, z) = C2x y−1(1 − x)zy, 0 < x < 0.5

where C2 does not depend on x . But we can recognize this as the conditional
density of a beta random variable with parameters y and zy +1 that is conditioned
to be in the interval (0, 0.5). �

12.3 The Gibbs Sampler 283

Rather than always choosing a random coordinate to update on, the Gibbs sampler
can also consider the coordinates in sequence. That is, on the first iteration we
could set I = 1, then set I = 2 on the next iteration, then I = 3, and so on until
the nth iteration, where I = n. On the next iteration, we start over. We illustrate
this with our next example, which is concerned with modeling the numbers of
home runs hit by two of the best hitters in baseball.

Example 12h Let N1(t) denote the number of home runs hit in the first 100t
percent of a baseball season, 0 ≤ t ≤ 1, by the baseball player AB; similarly, let
N2(t) be the number hit by CD.

Suppose that there are random variables W1 and W2 such that given that W1 = w1

and W2 = w2, {N1(t), 0 ≤ t ≤ 1} and {N2(t), 0 ≤ t ≤ 1} are independent Poisson
processes with respective rates w1 and w2. Furthermore, suppose that W1 and W2

are independent exponential random variables with rate Y , which is itself a random
variable that is uniformly distributed between 0.02 and 0.10. In other words, the
assumption is that the players hit home runs in accordance with Poisson processes
whose rates are random variables from a distribution that is defined in terms of a
parameter that is itself a random variable with a specified distribution.

Suppose that AB has hit 25 and CD 18 home runs in the first half of the season.
Give a method for estimating the mean number they each hit in the full season.

Solution Summing up the model, there are random variables Y, W1, W2 such
that:

1. Y is uniform on (0.02, 0.10).
2. Given that Y = y, W1 and W2 are independent and identically distributed

exponential random variables with rate y.
3. Given that W1 = w1 and W2 = w2, {N1(t)} and {N2(t)} are independent

Poisson processes with rates w1 and w2.

To find E[N1(1)|N1(0.5) = 25, N2(0.5) = 18], start by conditioning on W1.

E[N1(1)|N1(0.5) = 25, N2(0.5) = 18, W1] = 25 + 0.5W1

Taking the conditional expectation, given that N1(0.5) = 25 and N2(0.5) = 18,
of the preceding yields that

E[N1(1)|N1(0.5) = 25, N2(0.5) = 18]
= 25 + 0.5E[W1|N1(0.5) = 25, N2(0.5) = 18]

Similarly,

E[N2(1)|N1(0.5) = 25, N2(0.5) = 18]
= 18 + 0.5E[W2|N1(0.5) = 25, N2(0.5) = 18]

284 12 Markov Chain Monte Carlo Methods

We can now estimate these conditional expectations by using the Gibbs sampler.
To begin, note the joint distribution: For 0.02 < y < 0.10, w1 > 0, w2 > 0,

f (y, w1, w2, N1(0.5) = 25, N2(0.5) = 18)

= Cy2e−(w1+w2)ye−(w1+w2)/2(w1)
25(w2)

18

where C does not depend on any of y, w1, w2. Hence, for 0.02 < y < 0.10,

f (y|w1, w2, N1 = 25, N2 = 18) = C1 y2e−(w1+w2)y

which shows that the conditional distribution of Y given w1, w2, N1 = 25,

N2 = 18, is that of a gamma random variable with parameters 3 and w1 + w2

that is conditioned to be between 0.02 and 0.10. Also,

f (w1|y, w2, N1(0.5) = 25, N2(0.5) = 18) = C2e−(y+1/2)w1(w1)
25

from which we can conclude that the conditional distribution of W1 given
y, w2, N1 = 25, N2 = 18 is gamma with parameters 26 and y + 1

2 . Similarly,
the conditional distribution of W2 given y, w1, N1 = 25, N2 = 18, is gamma with
parameters 19 and y + 1

2 .
Hence, starting with values y, w1, w2, where .02 < y < 0.10, and wi > 0, the

Gibbs sampler is as follows.

1. Generate the value of a gamma random variable with parameters 3 and
w1 + w2 that is conditioned to be between or 0.02 and 0.10, and let it be
the new value of y.

2. Generate the value of a gamma random variable with parameters 26 and
y + 1

2 , and let it be the new value of w1.
3. Generate the value of a gamma random variable with parameters 19 and

y + 1
2 , and let it be the new value of w2.

4. Return to Step 1.

The average of the values of w1 is our estimate of E[W1|N1(0.5) = 25, N2(0.5) =
18], and the average of the values of w2 is our estimate of E[W2|N1(0.5) =
25, N2(0.5) = 18]. One-half of the former plus 25 is our estimate of the mean
number of home runs that AB will hit over the year, and one-half of the latter plus
18 is our estimate of the mean number that CD will hit.

It should be noted that the numbers of home runs hit by the two players are
dependent, with their dependence caused by their common dependence on the
value of the random variable Y . That is, the value of Y (which might relate to such
quantities as the average degree of liveliness of the baseballs used that season or
the average weather conditions for the year) affects the distribution of the mean
number of home runs that each player will hit in the year. Thus, information about
the number of home runs hit by one of the players yields probabilistic information
about the value of Y that affects the distribution of the number of home runs of the

12.3 The Gibbs Sampler 285

other player. This type of model, where there is a common random variable (Y in
this case) that affects the distributions of the conditional parameters of the random
variables of interest, is known as an hierarchical Bayes model. �

When applying the Gibbs sampler, it is not necessary to condition on all but one
of the variables. If it is possible to generate from joint conditional distributions,
then we may utilize them. For instance, suppose n = 3 and that we can generate
from the conditional distribution of any two of them given the third. Then, at each
iteration we could generate a random number U , set I = Int(3U +1), and generate
from the joint distribution of X j , Xk, j, k �= I , given the present value of X I .

Example 12i Let Xi , i = 1, 2, 3, 4, 5, be independent exponential random
variables, with Xi having mean i , and suppose we are interested in using simulation
to estimate

β = P

{
5∏

i=1

Xi > 120

∣∣∣∣∣
5∑

i=1

Xi = 15

}

We can accomplish this by using the Gibbs sampler via a random choice of two of
the coordinates. To begin, suppose that X and Y are independent exponentials with
respective rates λ and μ, where μ < λ, and let us find the conditional distribution
of X given that X + Y = a, as follows.

fX |X+Y (x |a) = C1 fX,Y (x, a − x), 0 < x < a

= C2e−λx e−μ(a−x), 0 < x < a

= C3e−(λ−μ)x , 0 < x < a

which shows that the conditional distribution is that of an exponential with rate
λ − μ that is conditioned to be less than a.

Using this result, we can estimate β by letting the initial state (x1, x2, x3, x4, x5)

be any five positive numbers that sum to 15. Now randomly choose two elements
from the set 1, 2, 3, 4, 5; say I = 2 and J = 5 are chosen. Then the conditional
distribution of X2, X5 given the other values is the conditional distribution of
two independent exponentials with means 2 and 5, given that their sum is
15 − x1 − x3 − x4. But, by the preceding, the values of X2 and X5 can be obtained
by generating the value of an exponential with rate 1

2 − 1
5 = 3

10 that is conditioned
to be less than 15 − x1 − x3 − x4, then setting x2 equal to that value and resetting
x5 to make

∑5
i=1 xi = 15. This process should be continually repeated, and the

proportion of state vectors x having
∏5

i=1 xi > 120 is the estimate of β. �

Example 12j Suppose that n independent trials are performed; each of
which results in one of the outcomes 1, 2, . . . , r , with respective probabilities
p1, p2, . . . , pr ,

∑r
i=1 pi = 1, and let Xi denote the number of trials that result in

outcome i . The random variables X1, . . . , Xr , whose joint distribution is called
the multinomial distribution, were introduced in Example 12g where it was shown
how they can be simulated. Now suppose n > r , and that we want to simulate

286 12 Markov Chain Monte Carlo Methods

X1, . . . , Xr conditional on the event that they are all positive. That is, we want to
simulate the result of the trials conditional on the event that each outcome occurs at
least once. How can this be efficiently accomplished when this conditioning event
has a very small probability?

Solution To begin, it should be noted that it would be wrong to suppose that
we could just generate the result of n − r of these trials, and then let Xi equal 1
plus the number of these n − r trials that result in outcome i . (That is, attempting
to put aside the r trials in which all outcomes occur once, and then simulating the
remaining n − r trials does not work.) To see why, let n = 4 and r = 2. Then,
under the putting aside method, the probability that exactly 2 of the trials would
result in outcome 1 is 2p(1 − p), where p = p1. However, for the multinomial
random variables X1, X2

P{X1 = 2|X1 > 0, X2 > 0} = P{X1 = 2}
P{X1 > 0, X2 > 0}

= P{X1 = 2}
1 − P{X1 = 4} − P{X2 = 4}

=

(
4
2

)
p2(1 − p)2

1 − p4 − (1 − p)4

As the preceding is not equal to 2p(1 − p)(tryp = 1/2), the method does not
work.

We can use the Gibbs sampler to generate a Markov chain having the appropriate
limiting probabilities. Let the initial state be any arbitrary vector of r positive
integers whose sum is n, and let the states change in the following manner.
Whenever the state is x1, . . . , xr , generate the next state by first randomly choosing
two of the indices from 1, . . . , r . If i and j are chosen, let s = xi +x j , and simulate
Xi and X j from their conditional distribution given that Xk = xk, k �= i, j . Because
conditional on Xk = xk, k �= i, j there are a total of s trials that result in either
outcome i or j , it follows that the number of these trials that result in outcome
i is distributed as a binomial random variable with parameters (s, pi

pi +p j
) that is

conditioned to be one of the values 1, . . . , s −1. Consequently, the discrete inverse
transform method can be used to simulate such a random variable; if its value is
v, then the next state is the same as the previous one with the exception that the
new values of xi and x j are v and s − v. Continuing on in this manner results in a
sequence of states whose limiting distribution is that of the multinomial conditional
on the event that all outcomes occur at least once. �

Remarks

1. The same argument can be used to verify that we obtain the appropriate
limiting mass function when we consider the coordinates in sequence and

12.4 Continuous time Markov Chains and a Queueing Loss Model 287

apply the Gibbs sampler (as in Example 12i), or when we use it via
conditioning on less than all but one of the values (as in Example 12j). These
results are proven by noticing that if one chooses the initial state according
to the mass function f , then, in either case, the next state also has mass
function f . But this shows that f satisfies the Equations (12.2), implying by
uniqueness that f is the limiting mass function.

2. Suppose you are using the Gibbs sampler to estimate E[Xi] in a situation
where the conditional means E[Xi |X j , j �= i] are easily computed. Then,
rather than using the average of the successive values of Xi as the estimator,
it is usually better to use the average of the conditional expectations. That
is, if the present state is x, then take E[Xi |X j = x j , j �= i] rather
than xi as the estimate from that iteration. Similarly, if you are trying to
estimate P{Xi = x}, and P{Xi = x |X j , j �= i} is easily computed,
then the average of these quantities is usually a better estimator than is
the proportion of time in which the i th component of the state vector
equals x .

3. The Gibbs sampler shows that knowledge of all the conditional distributions
of Xi given the values of the other X j , j �= i , determines the joint distribution
of X. �

12.4 Continuous time Markov Chains and a Queueing
Loss Model

We often are interested in a process {X (t), t ≥ 0} that evolves continuously over
time. Interpreting X (t) as the state of the process at time t , the process is said to
be a continuous time Markov chain having stationary transition probabilities if the
set of possible states is either finite or countably infinite, and the process satisfies
the following properties:
Given that the current state is i , then

(a) the time until the process makes a transition into another state is an
exponential random variable with rate, say, vi ;

(b) when a transition out of state i occurs then, independent of what has
previously occurred, including how long it has taken to make the transition
from state i , the next state entered will be j with probability Pi, j .

Thus, while the sequence of states of a continuous time Markov chain constitutes
a discrete time Markov chain with transition probabilities Pi, j , the times between
transitions are exponentially distributed with rates depending on the current state.
Let us suppose that the chain has a finite number of states, which in our general
discussion we label as 1, . . . , N .

Let P(i) denote the long run proportion of time that the chain is in state i .
(Assuming that the discrete time Markov chain composed of the sequence of

288 12 Markov Chain Monte Carlo Methods

states is irreducible, these long run proportions will exist and will not depend
on the initial state of the process. Also, because the time spent in a state has a
continuous exponential distribution, there is no analog to a periodic discrete time
chain and so the long run proportions are always also limiting probabilities.) If we
let

λ(i, j) = vi Pi, j

then because vi is the rate at which the chain when in state i makes a transition
out of that state, and Pi, j is the probability that such a transition is into state j , it
follows that λ(i, j) is the rate when in state i that the chain makes a transition into
state j . The continuous time Markov chain is said to be time reversible if

P(i)λ(i, j) = P(j)λ(j, i), for all i, j

Thus, the continuous time Markov chain will be time reversible if the rate of
transitions from i to j is equal to rate of transitions from j to i, for all states
i and j . Moreover, as in the case of a discrete time Markov chain, if one can
find probabilities P(i), i = 1, . . . , N that satisfy the preceding time reversibility
equations, then the chain is time reversible and the P(i) are the limiting (also
known as stationary) probabilities.

Let us now consider a queueing system in which customers arrive according to
a Poisson process with rate λ. Suppose that each customer is of one of the types
1, . . . , r, and that each new arrival is, independent of the past, a type i customer
with probability pi ,

∑r
i=1 pi = 1. Suppose that if a type i customer is allowed to

enter the system, then the time it spends before departing is an exponential random
variable with rate μi , i = 1, . . . , r. Further suppose that the decision as to whether
or not to allow a type i customer to enter depends on the set of customers currently in
the system. More specifically, say that the current state of the system is (n1, . . . , nr)

if there are currently ni type i customers in the system, for each i = 1, . . . , r, and
suppose that there is a specified set of states A such that a customer would not be
allowed into the system if that would result in a system state that is not in A. That
is, if the current state is n = (n1, . . . , nr) ∈ A when a type i customer arrives,
then that customer would be allowed to enter the system if n + ei ∈ A, and would
not be allowed to enter if n + ei /∈ A, where ei = (0, . . . , 0, 1, 0, . . . , 0) with the
1 being in position i . Suppose further that A is such that n + ei ∈ A implies that
n ∈ A.

For an example of the preceding, suppose the system is a hospital and that the
arrivals are patients. Suppose that the hospital provides m types of services and
that a type i patient requires ri (j) ≥ 0 units of service type j . If we further suppose
that the hospital’s capacity for providing type j service is c j ≥ 0, it follows that the
hospital can simultaneously accommodate n1 type 1 patients, n2 type 2 patients,
. . . , and nr type r patients if

r∑
i=1

niri (j) ≤ c j , j = 1, . . . , m

12.4 Continuous time Markov Chains and a Queueing Loss Model 289

and so

A = {n :
r∑

i=1

niri (j) ≤ c j , j = 1, . . . , m}

We now show that the continuous time Markov chain with states n ∈ A is time
reversible. To do so, suppose that n = (n1, . . . , nr) ∈ A, with ni > 0. Note that
when in state n the process will go to state n − ei if a type i customer departs; as
there are ni type i customers in the system this will occur at rate niμ j . Hence, if
P(n) is the proportion of time that the state is n,we see that

rate at which the process goes from state n to state n − ei = P(n)niμi

In addition, when in state n − ei the rate at which the process goes to state n is the
arrival rate of a type i customer, namely λpi . Consequently, with λi ≡ λpi ,

rate at which the process goes from state n − ei to state n = P(n − ei)λi

Thus the time reversibility equations are

P(n)niμi = P(n − ei)λi

Solving the preceding for P(n) and then iterating this solution ni times yields that

P(n) = λi/μi

ni
P(n − ei)

= λi/μi

ni

λi/μi

(ni − 1)
P(n − ei − ei)

= (λi/μi)
2

ni (ni − 1)
P(n − ei − ei)

= . . .

= . . .

= . . .

= (λi/μi)
ni

ni !
P(n1, . . . , ni−1, 0, ni+1, . . . , nr)

Doing the same with the other coordinates of the vector n shows that the time
reversibility equations yield that

P(n) = P(0)

r∏
i=1

(λi/μi)
ni

ni !

To determine P(0) = P(0, . . . , 0), we sum the preceding over all vectors n ∈ A,

which yields that

1 = P(0)
∑
n∈A

r∏
i=1

(λi/μi)
ni

ni !

290 12 Markov Chain Monte Carlo Methods

Hence, the time reversibility equations imply that

P(n) =
∏r

i=1
(λi /μi)

ni

ni !∑
n∈A

∏r
i=1

(λi /μi)
ni

ni !

= C
r∏

i=1

(λi/μi)
ni

ni !
, n ∈ A (12.4)

where C = 1∑
n∈A

∏r
i=1

(λi /μi)
ni

ni !

. Because the preceding formulas for P(n) are easily

shown to satisfy the time reversibility equations, we can thus conclude that the
chain is time reversible with stationary probabilities given by (12.4). It is, however,
difficult to directly use the preceding formula because it would not normally be
computationally possible to compute C . However, we can use the Markov chain
monte carlo method to great effect, as we now show.

To start, note that if X1, . . . , Xr are independent Poisson random variables,
with Xi having mean λi/μi , then the stationary distribution given by (12.4) is the
conditional distribution of X = (X1, . . . , Xr) given that X ∈ A. This is so, because
for n = (n1, . . . , nr) ∈ A

P(Xi = ni , i = 1, . . . , r |X ∈ A) =
∏r

i=1 P(Xi = ni)

P(X ∈ A)

=
∏r

i=1 e−λi /μi (λi /μi)
ni

ni !

P(X ∈ A)

= K
r∏

i=1

(λi/μi)
ni

ni !

where K = e−∑i λi /μi /P(X ∈ A)is a constant that does not depend on n. Because
the sums, over all n ∈ A, of both the preceding and the mass function given
by (12.4) equal 1, we see that K = C , and so the stationary distribution of the
continuous time Markov chain is the conditional distribution of X given that X ∈ A.

Now, the conditional distribution of Xi given X j = n j , j �= i, X ∈ A, is that of
a Poisson random variable Xi with mean λi/μi that is conditioned to be such
that (n1, . . . , ni−1, Xi , ni+1, . . . , nr) ∈ A. Because n + ei ∈ A implies that
n ∈ A, the preceding conditional distribution will be the distribution of a Poisson
random variable Xi with mean λi/μi that is conditioned to be less than or equal
to v ≡ max{k : (n1, . . . , ni−1, k, ni+1, . . . , nr) ∈ A}. As such a random variable
is easily generated, say by the discrete inverse transform technique, we see that
the Gibb’s sampler can be effectively employed to generate a Markov chain whose
limiting distribution is the stationary distribution of the queueing model.

12.5 Simulated Annealing

Let A be a finite set of vectors and let V (x) be a nonnegative function defined on
x ∈ A, and suppose that we are interested in finding its maximal value and at least

12.5 Simulated Annealing 291

one argument at which the maximal value is attained. That is, letting

V ∗ = max
x∈A

V (x)

and
M = {x ∈ A : V (x) = V ∗}

we are interested in finding V ∗ as well as an element in M. We will now show
how this can be accomplished by using the methods of this chapter.

To begin, let λ > 0 and consider the following probability mass function on the
set of values in A:

pλ(x) = eλV (x)∑
x∈A eλV (x)

By multiplying the numerator and denominator of the preceding by e−λV ∗
, and

letting |M| denote the number of elements in M, we see that

pλ(x) = eλ(V (x)−V ∗)

|M| +∑
x/∈M eλ(V (x)−V ∗)

However, since V (x) − V ∗ < 0 for x /∈ M, we obtain that as λ → ∞,

pλ(x) → δ(x,M)

|M|
where δ(x,M) = 1 if x ∈ M and is 0 otherwise.

Hence, if we let λ be large and generate a Markov chain whose limiting
distribution is pλ(x), then most of the mass of this limiting distribution will be
concentrated on points in M. An approach that is often useful in defining such a
chain is to introduce the concept of neighboring vectors and then use a Hastings–
Metropolis algorithm. For instance, we could say that the two vectors x ∈ A and
y ∈ A are neighbors if they differ in only a single coordinate or if one can be
obtained from the other by interchanging two of its components. We could then
let the target next state from x be equally likely to be any of its neighbors, and if
the neighbor y is chosen, then the next state becomes y with probability

min

{
1,

eλV (y)/|N (y)|
eλV (x)/|N (x)|

}

or remains x otherwise, where |N (z)| is the number of neighbors of z. If each
vector has the same number of neighbors (and if not already so, this can almost
always be arranged by increasing the state space and letting the V value of any
new state equal 0), then when the state is x, one of its neighbors, say y, is randomly
chosen; if V (y) ≥ V (x), then the chain moves to state y, and if V (y) < V (x),
then the chain moves to state y with probability exp{λ(V (y) − V (x))} or remains
in state x otherwise.

292 12 Markov Chain Monte Carlo Methods

One weakness with the preceding algorithm is that because λ was chosen to be
large, if the chain enters a state x whose V value is greater than that of each of its
neighbors, then it might take a long time for the chain to move to a different state.
That is, whereas a large value of λ is needed for the limiting distribution to put most
of its weight on points in M, such a value typically requires a very large number
of transitions before the limiting distribution is approached. A second weakness is
that since there are only a finite number of possible values of x, the whole concept
of convergence seems meaningless since we could always, in theory, just try each
of the possible values and so obtain convergence in a finite number of steps. Thus,
rather than considering the preceding from a strictly mathematical point of view, it
makes more sense to regard it as a heuristic approach, and in doing so it has been
found to be useful to allow the value of λ to change with time.

A popular variation of the preceding, known as simulated annealing, operates
as follows. If the nth state of the Markov chain is x, then a neighboring value is
randomly selected. If it is y, then the next state is either y with probability

min

{
1,

exp{λn V (y)}/|N (y)|
exp{λn V (x)}/|N (x)|

}

or it remains x, where λn, n ≥ 1, is a prescribed set of values that start out small
(thus resulting in a large number of changes in state) and then grow.

A computationally useful choice of λn (and a choice that mathematically results
in convergence) is to let λn = C log(1 + n), where C > 0 is any fixed positive
constant (see Besag et al., 1995; Diaconis and Holmes 1995). If we then generate
m successive states X1, . . . , Xm , we can then estimate V ∗ by maxi=1...,m V (Xi),
and if the maximum occurs at Xi∗ then this is taken as an estimated point in M.

Example 12k The Traveling Salesman Problem One version of
the traveling salesman problem is for the salesman to start at city 0 and then
sequentially visit all of the cities 1, . . . , r . A possible choice is then a permutation
x1, . . . , xr of 1, . . . , r with the interpretation that from 0 the salesman goes to city
x1, then to x2, and so on. If we suppose that a nonnegative reward v(i, j) is earned
whenever the salesman goes directly from city i to city j , then the return of the
choice x = (x1, . . . , xr) is

V (x) =
r∑

i=1

v(xi−1, xi) where x0 = 0

By letting two permutations be neighbors if one results from an interchange of two
of the coordinates of the other, we can use simulated annealing to approximate the
best path. Namely, start with any permutation x and let X0 = x. Now, once the
nth state (that is, permutation) has been determined, n ≥ 0, then generate one of

its neighbors at random [by choosing I , J equally likely to be any of the

(
r
2

)

12.6 The Sampling Importance Resampling Algorithm 293

values i �= j, i, j = 1, . . . , r and then interchanging the values of the I th and
J th elements of Xn]. Let the generated neighbor be y. Then if V (y) ≥ V (Xn), set
Xn+1 = y. Otherwise, set Xn+1 = y with probability (1 + n)(V (y)−V (Xn)), or set it
equal to Xn otherwise. [Note that we are using λn = log(1 + n).] �

12.6 The Sampling Importance Resampling Algorithm

The sampling importance resampling, or SIR, algorithm is a method for generating
a random vector X whose mass function

f (x) = C1 fo(x)

is specified up to a multiplicative constant by simulating a Markov chain whose
limiting probabilities are given by a mass function

g(x) = C2go(x)

that is also specified up to a multiplicative constant. It is similar to the acceptance–
rejection technique, where one starts by generating the value of a random vector Y
with density g and then, if Y = y, accepting this value with probability f (y)/cg(y),
where c is a constant chosen so that f (x)/cg(x) ≤ 1, for all x. If the value is not
accepted, then the process begins anew, and the eventually accepted value X has
density f . However, as f and g are no longer totally specified, this approach is
not available.

The SIR approach starts by generating m successive states of a Markov chain
whose limiting probability mass function is g. Let these state values be denoted as
y1, . . . , ym . Now, define the “weights” wi , i = 1, . . . , m, by

wi = fo(yi)

go(yi)

and generate a random vector X such that

P{X = y j } = w j∑m
i=1 wi

, j = 1, . . . , m

We will show that when m is large, the random vector X has a mass function
approximately equal to f .

Proposition The distribution of the vector X obtained by the SIR method
converges as m → ∞ to f .

Proof Let Yi , i = 1, . . . , m, denote the m random vectors generated by the
Markov chain whose limiting mass function is g, and let Wi = fo(Yi)/go(Yi)

294 12 Markov Chain Monte Carlo Methods

denote their weights. For a fixed set of vectors A, let Ii = 1 if Yi ∈ A and let it
equal 0 otherwise. Then

P{X ∈ A|Yi , i = 1, . . . , m} =
∑m

i=1 Ii Wi∑m
i=1 Wi

(12.5)

Now, by the Markov chain result of Equation (12.2), we see that as m → ∞,

m∑
i=1

Ii Wi/m → Eg[I W] = Eg[I W |I = 1]Pg{I = 1} = Eg[W |Y ∈ A]Pg{Y ∈ A}

and

m∑
i=1

Wi/m → Eg[W] = Eg[fo(Y)/go(Y)] =
∫

fo(y)
go(y)

g(y)dy = C2/C1

Hence, dividing numerator and denominator of (12.5) by m shows that

P{X ∈ A|Yi , i = 1, . . . , m} → C1

C2
Eg[W |Y ∈ A]Pg{Y ∈ A}

But,

C1

C2
Eg[W |Y ∈ A]Pg{Y ∈ A} = C1

C2
Eg

[
fo(Y)

go(Y)
|Y ∈ A

]
Pg{Y ∈ A}

=
∫

y∈A

f (y)
g(y)

g(y)dy

=
∫

y∈A
f (y)dy

Hence, as m → ∞,

P{X ∈ A|Yi , i = 1, . . . , m} →
∫

y∈A
f (y)dy

which implies, by a mathematical result known as Lebesgue’s dominated
convergence theorem, that

P{X ∈ A} = E[P{X ∈ A|Yi , i = 1, . . . , m}] →
∫

y∈A
f (y)dy

and the result is proved. �

The sampling importance resampling algorithm for approximately generating a
random vector with mass function f starts by generating random variables with a

12.6 The Sampling Importance Resampling Algorithm 295

different joint mass function (as in importance sampling) and then resamples from
this pool of generated values to obtain the random vector.

Suppose now that we want to estimate E f [h(X)] for some function h. This can be
accomplished by first generating a large number of successive states of a Markov
chain whose limiting probabilities are given by g. If these states are y1, . . . , ym ,
then it might seem natural to choose k vectors X1, . . . , Xk having the probability
distribution

P{X = y j } = w j∑m
i=1 wi

, j = 1, . . . , m

where k/m is small and wi = fo(yi)/go(yi), and then use
∑k

i=1 h(Xi)/k as the
estimator. However, a better approach is not to base the estimator on a sampled set
of k values, but rather to use the entire set of m generated values y1, . . . , ym . We
now show that

1∑m
i=1 wi

m∑
j=1

w j h(y j)

is a better estimator of E f [h(X)] than is
∑k

i=1 h(Xi)/k. To show this, note that

E[h(Xi)|y1, . . . , ym] = 1∑m
i=1 wi

m∑
j=1

w j h(y j)

and thus

E

[
1

k

k∑
i=1

h(Xi)|y1, . . . , ym

]
= 1∑m

i=1 wi

m∑
j=1

w j h(y j)

which shows that
∑m

j=1 h(y j)w j/
∑m

i=1 wi has the same mean and smaller variance

than
∑k

i=1 h(Xi)/k.

The use of data generated from one distribution to gather information about
another distribution is particularly useful in Bayesian statistics.

Example 12l Suppose that X is a random vector whose probability
distribution is specified up to a vector of unknown parameters θ . For instance,
X could be a sequence of independent and identically distributed normal random
variables and θ = (θ1, θ2) where θ1 is the mean and θ2 is the variance of these
random variables. Let f (x|θ) denote the density of X given θ . Whereas in classical
statistics one assumes that θ is a vector of unknown constants, in Bayesian statistics
we suppose that it, too, is random and has a specified probability density function
p(θ), called the prior density.

If X is observed to equal x, then the conditional, also known as the posterior,
density of θ is given by

p(θ |x) = f (x|θ)p(θ)∫
f (x|θ)p(θ)d(θ)

296 12 Markov Chain Monte Carlo Methods

However, in many situations
∫

f (x|θ)p(θ)d(θ) cannot easily be computed, and so
the preceding formula cannot be directly used to study the posterior distribution.

One approach to study the properties of the posterior distribution is to start by
generating random vectors θ from the prior density p and then use the resulting
data to gather information about the posterior density p(θ |x). If we suppose that
the prior density p(θ) is completely specified and can be directly generated from,
then we can use the SIR algorithm with

fo(θ) = f (x|θ)p(θ)

g(θ) = go(θ) = p(θ)

w(θ) = f (x|θ)

To begin, generate a large number m of random vectors from the prior density
p(θ). Let their values be θ 1, . . . , θm . We can now estimate any function of the
form E[h(θ)|x] by the estimator

m∑
j=1

α j h(θ j), where α j = f (x|θ j)∑m
i=1 f (x|θ i)

For instance, for any set A we would use

m∑
j=1

α j I {θ j ∈ A} to estimate P{θ ∈ A|x}

where I {θ j ∈ A} is 1 if θ j ∈ A and is 0 otherwise.
In cases where the dimension of θ is small, we can use the generated data from

the prior along with their weights to graphically explore the posterior. For instance,
if θ is two-dimensional, then we can plot the prior generated values θ 1, . . . , θm on
a two-dimensional graph in a manner that takes the weights of these points into
account. For instance, we could center a dot on each of these m points, with the
area of the dot on the point θ j being proportional to its weight f (x|θ j). Another
possibility would be to let all the dots be of the same size but to let the darkness
of the dot depend on its weight in a linear additive fashion. That is, for instance, if
m = 3 and θ 1 = θ 2, f (x|θ 3) = 2 f (x|θ 1), then the colors of the dots at θ 1 and θ 3

should be the same.
If the prior density p is only specified up to a constant, or if it is hard to directly

generate random vectors from it, then we can generate a Markov chain having p
as the limiting density, and then continue as before. �

Remark Because
p(θ |x)

p(θ)
= C f (x|θ)

the estimator of E[h(θ)|x] given in the preceding example could also have been
derived by using the normalized importance sampling technique of Section 10.3.�

12.7 Coupling from the Past 297

12.7 Coupling from the Past

Consider an irreducible Markov chain with states 1, . . . , m and transition
probabilities Pi, j and suppose we want to generate the value of a random variable
whose distribution is that of the stationary distribution of this Markov chain (see
Section 12.1 for relevant definitions). In Section 12.1 we noted that we could
approximately generate such a random variable by arbitrarily choosing an initial
state and then simulating the resulting Markov chain for a large fixed number
of time periods; the final state is used as the value of the random variable. In this
section we present a procedure that generates a random variable whose distribution
is exactly that of the stationary distribution.

If, in theory, we generated the Markov chain starting at time −∞ in any arbitrary
state, then the state at time 0 would have the stationary distribution. So imagine that
we do this, and suppose that a different person is to generate the next state at each
of these times. Thus, if X (−n), the state at time −n, is i , then person −n would
generate a random variable that is equal to j with probability Pi, j , j = 1, . . . , m,
and the value generated would be the state at time −(n − 1). Now suppose that
person −1 wants to do his random variable generation early. Because he does
not know what the state at time −1 will be, he generates a sequence of random
variables N−1(i), i = 1, . . . , m, where N−1(i), the next state if X (−1) = i , is
equal to j with probability Pi, j , j = 1, . . . , m. If it results that X (−1) = i , then
person −1 would report that the state at time 0 is

S−1(i) = N−1(i), i = 1, . . . , m

(That is, S−1(i) is the simulated state at time 0 when the simulated state at time
−1 is i .)

Now suppose that person −2, hearing that person −1 is doing his simulation
early, decides to do the same thing. She generates a sequence of random variables
N−2(i), i = 1, . . . , m, where N−2(i) is equal to j with probability Pi, j , j =
1, . . . , m. Consequently, if it is reported to her that X (−2) = i , then she will
report that X (−1) = N−2(i). Combining this with the early generation of person
−1 shows that if X (−2) = i , then the simulated state at time 0 is

S−2(i) = S−1(N−2(i)), i = 1, . . . , m

Continuing in the preceding manner, suppose that person −3 generates a
sequence of random variables N−3(i), i = 1, . . . , m, where N−3(i) is to be the
generated value of the next state when X (−3) = i . Consequently, if X (−3) = i
then the simulated state at time 0 would be

S−3(i) = S−2(N−3(i)), i = 1, . . . , m

Now suppose we continue the preceding, and so obtain the simulated functions

S−1(i), S−2(i), S−3(i), . . . i = 1, . . . , m

298 12 Markov Chain Monte Carlo Methods

Going backwards in time in this manner, we will at sometime, say −r , have
a simulated function S−r (i) that is a constant function. That is, for some state
j, S−r (i) will equal j for all states i = 1, . . . , m. But this means that no matter what
the simulated values from time −∞ to −r , we can be certain that the simulated
value at time 0 is j . Consequently, j can be taken as the value of a generated
random variable whose distribution is exactly that of the stationary distribution of
the Markov chain.

Example 12m Consider a Markov chain with states 1, 2, 3 and suppose that
simulation yielded the values

N−1(i) =

⎧⎪⎨
⎪⎩

3, if i = 1
2, if i = 2
2, if i = 3

and

N−2(i) =

⎧⎪⎨
⎪⎩

1, if i = 1
3, if i = 2
1, if i = 3

Then

S−2(i) =

⎧⎪⎨
⎪⎩

3, if i = 1
2, if i = 2
3, if i = 3

If

N−3(i) =

⎧⎪⎨
⎪⎩

3, if i = 1
1, if i = 2
1, if i = 3

then

S−3(i) =

⎧⎪⎨
⎪⎩

3, if i = 1
3, if i = 2
3, if i = 3

Therefore, no matter what the state is at time −3, the state at time 0 will be 3. �

Remarks The procedure developed in this section for generating a random
variable whose distribution is the stationary distribution of the Markov chain is
called coupling from the past. �

Exercises

1. Let π j , j = 1, . . . , N , denote the stationary probabilities of a Markov chain.
Show that if P{X0 = j} = π j , j = 1, . . . , N , then

P{Xn = j} = π j , for all n, j

Exercises 299

2. Let Q be a symmetric transition probability matrix, that is, qi j = q ji for all
i, j . Consider a Markov chain which, when the present state is i , generates
the value of a random variable X such that P{X = j} = qi j , and if X = j ,
then either moves to state j with probability b j/(bi + b j), or remains in state
i otherwise, where b j , j = 1 . . . , N , are specified positive numbers. Show
that the resulting Markov chain is time reversible with limiting probabilities
π j = Cb j , j = 1, . . . , N .

3. Let πi , i = 1, . . . , n be positive numbers that sum to 1. Let Q be an irreducible
transition probability matrix with transition probabilities q(i, j), i, j =
1, . . . , n. Suppose that we simulate a Markov chain in the following manner:
if the current state of this chain is i , then we generate a random variable that
is equal to k with probability q(i, k), k = 1, . . . , n. If the generated value is j
then the next state of the Markov chain is either i or j , being equal to j with
probability

π j q(j,i)

πi q(i, j)+π j q(j,i) and to i with probability 1 − π j q(j,i)

πi q(i, j)+π j q(j,i) .

(a) Give the transition probabilities of the Markov chain we are simulating.
(b) Show that {π1, . . . , πn} are the stationary probabilities of this chain.

4. Explain how to use a Markov chain monte carlo method to generate the
value of a random vector X1, . . . , X10 whose distribution is approximately
the conditional distribution of 10 independent exponential random variables
with common mean 1 given that

∏10
i=1 Xi > 20.

5. Let U1, . . . , Un be independent uniform (0, 1) random variables. For constants
a1 > a2 > . . . > an > 0 give a method for generating a random vector whose
distribution is approximately that of the conditional distribution of U1, . . . , Un

given that a1U1 < a2U2 < . . . < anUn.

6. Suppose that the random variables X and Y both take on values in the interval
(0, B). Suppose that the joint density of X given that Y = y is

f (x |y) = C(y)e−xy, 0 < x < B

and the joint density of Y given that X = x is

f (y|x) = C(x)e−xy, 0 < y < B

Give a method for approximately simulating the vector X, Y . Run a simulation
to estimate (a) E[X] and (b) E[XY].

7. Give an efficient method for generating nine uniform points on (0, 1)
conditional on the event than no two of them are within 0.1 of each other.
(It can be shown that if n points are independent and uniformly distributed on

300 12 Markov Chain Monte Carlo Methods

(0, 1), then the probability that no two of them are within d of each other is,
for 0 < d < 1/(n − 1), [1 − (n − 1)d]n .)

8. In Example 12d, it can be shown that the limiting mass function of the number
of customers at the m + 1 servers is

p(n1, . . . , nm, nm+1) = C
m+1∏
i=1

Pi (ni),

m+1∑
i=1

ni = r

where for each i = 1, . . . , m + 1, Pi (n), n = 0, . . . , r , is a probability mass
function. Let ek be the m + 1 component vector with a 1 in the kth position
and zeros elsewhere. For a vector n = (n1, . . . , nm+1), let

q(n, n − ei + ej) = I (ni > 0)

(m + 1)
∑m+1

j=1 I (n j > 0)

In words, q is the transition probability matrix of a Markov chain that at each
step randomly selects a nonempty server and then sends one of its customers to
a randomly chosen server. Using this q function, give the Hastings–Metropolis
algorithm for generating a Markov chain having p(n1, . . . , nm, nm+1) as its
limiting mass function.

9. Let Xi , i = 1, 2, 3, be independent exponentials with mean 1. Run a simulation
study to estimate

(a) E[X1 + 2X2 + 3X3|X1 + 2X2 + 3X3 > 15].
(b) E[X1 + 2X2 + 3X3|X1 + 2X2 + 3X3 < 1].

10. A random selection of m balls is to be made from an urn that contains n balls,
ni of which have color type i = 1, . . . , r,

∑r
i=1 ni = n. Let Xi denote the

number of withdrawn balls that have color type i . Give an efficient procedure
for simulating X1, . . . , Xr conditional on the event that all r color types are
represented in the random selection. Assume that the probability that all color
types are represented in the selection is a small positive number.

11. Suppose the joint density of X, Y, Z is given by

f (x, y, z) = Ce−(x+y+z+axy+bxz+cyz), x > 0, y > 0, z > 0

where a, b, c are specified nonnegative constants, and C does not depend on
x, y, z. Explain how we can simulate the vector X, Y, Z , and run a simulation
to estimate E[XY Z] when a = b = c = 1.

Bibliography 301

12. Suppose that for random variables X, Y, N

P{X = i, y ≤ Y ≤ y + dy, N = n}

≈ C

(
n
i

)
yi+α−1(1 − y)ni+β−1e−λ λn

n!
dy

where i = 0, . . . , n, n = 0, 1, . . . , y ≥ 0, and where α, β, λ are
specified constants. Run a simulation to estimate E[X], E[Y], and E[N] when
α = 2, β = 3, λ = 4.

13. Use the SIR algorithm to generate a permutation of 1, 2, . . . , 100 whose
distribution is approximately that of a random permutation X1, . . . , X100

conditioned on the event that
∑

j j X j > 285, 000.

14. Let X1, X2, . . . , Xn be random points in �, the circle of radius 1 centered at
the origin. Suppose that for some r, 0 < r < 1, their joint density function is
given by

f (x1, . . . , xn) = K exp{−βt (r : x1, . . . , xn)}, xi ∈ �, i = 1, . . . , n

where t (r : x1, . . . , xn) is the number of the

(
n
2

)
pairs of points xi , x j , i �= j ,

that are within a distance r of each other, and 0 < β < ∞. (Note that β = ∞
corresponds to the case where the Xi are uniformly distributed on the circle
subject to the constraint that no two points are within a distance r of each
other.) Explain how you can use the SIR algorithm to approximately generate
these random points. If r and β were both large, would this be an efficient
algorithm?

15. Generate 100 random numbers U0,k, k = 1, . . . , 10, Ui, j , i �= j, i, j =
1, . . . , 10. Now, consider a traveling salesman problem in which the salesman
starts at city 0 and must travel in turn to each of the 10 cities 1, . . . , 10
according to some permutation of 1, . . . , 10. Let Ui j be the reward earned
by the salesman when he goes directly from city i to city j . Use simulated
annealing to approximate the maximal possible return of the salesman.

Bibliography

Aarts, E., and J. Korst, Simulated Annealing and Boltzmann Machines. Wiley, New York,
1989.

Besag, J., “Towards Bayesian Image Analysis,” J. Appl. Statistics, 16, 395–407, 1989.

302 12 Markov Chain Monte Carlo Methods

Besag, J., P. Green, D. Higdon, and K. Mengersen, “Bayesian Computation and Stochastic
Systems (with Discussion),” Statistical Sci., 10, 3–67, 1995.

Diaconis, P., and S. Holmes, “Three Examples of Monte-Carlo Markov Chains: At the
Interface between Statistical Computing, Computer Science, and Statistical Mechanics,”
Discrete Probability and Algorithms (D. Aldous, P. Diaconis, J. Spence, and J. M. Steele,
eds.), pp. 43–56. Springer-Verlag, 1995.

Gelfand, A. E., S. E. Hills, A. Racine-Poon, and A. F. Smith, “Illustration of Bayesian
Inference in Normal Data Models using Gibbs Sampling,” J. Am. Statistical Assoc., 85,
972–985, 1990.

Gelfand, A. E., and A. F. Smith, “Sampling Based Approaches to Calculating Marginal
Densities,” J. Am. Statistical Assoc., 85, 398–409, 1990.

Gelman, A., and D. B. Rubin, “Inference from Iterative Simulation (with Discussion),”
Statistical Sci., 7, 457–511, 1992.

Geman, S., and D. Geman, “Stochastic Relaxation, Gibbs Distribution, and the Bayesian
Restoration of Images,” IEEE Trans. Pattern Anal. Machine Intelligence, 6, 721–724,
1984.

Geyer, C. J., “Practical Markov Chain Monte Carlo (with Discussion),” Statistical Sci., 7,
473–511, 1992.

Gidas, B., “Metropolis-type Monte Carlo Simulation Algorithms and Simulated Annealing,”
in Trends in Contemporary Probability (J. L. Snell, ed.). CRC Press. Boca Raton, FL,
1995.

Hajek, B., “Cooling Schedules for Optimal Annealing,” Math. Operations Res., 13, 311–
329, 1989.

Hammersley, J. M., and D. C. Handscomb, Monte Carlo Methods. Methuen, London, 1965.
Ripley, B., Stochastic Simulation. Wiley, New York, 1987.
Rubin, D. R., “Using the SIR Algorithm to Simulate Posterior Distributions,” in Bayesian

Statistics 3 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds.),
pp. 395–402. Oxford University Press, 1988.

Rubinstein, R. R., Monte Carlo Optimization, Simulation, and Sensitivity of Queueing
Networks. Wiley, New York, 1986.

Sinclair, A., Algorithms for Random Generation and Counting. Birkhauser, Boston, 1993.
Smith, A. F., and G. O. Roberts, “Bayesian Computation via the Gibbs Sampler and Related

Markov Chain Monte Carlo Methods (with Discussion),” J. Roy. Statistical Soc., Ser. B,
55, 3–23, 1993.

Index

Note: Page numbers followed by ‘‘n’’ indicate footnotes, ‘‘f’’ indicate figures and
‘‘t’’ indicate tables.

A

Acceptance-rejection technique, 56–59

Age, 182f

Alias method, 60–63

Antithetic variables

estimators obtained with, 186

for monotone function expected value

estimation, 220–222

in variance reduction techniques, 155–162

verification of, 220–222

Approximate confidence intervals, 143–144

Averages, calculation of, 51

Axioms of probability, 6

B

Batch means method, 274

Bayesian statistics, 295

Bernoulli probability mass function, 203

Bernoulli random variables, 52–53,

140, 144

independent, 200, 204

sequence generation with, 52–53

mass function of, 204

Bernoulli trials, 56

Beta distribution, 37

Binomial probabilities, 19

Binomial random variables, 18–19, 205

generation of, 55

inverse transform method, 56

independent, 241

mean of, 20

variance of, 20

Bivariate normal distribution, 100–102

Bivariate normal vector, 101

Black box, 229

Blackjack, 167–169

Bootstrap statistics, 3, 135

Bootstrapping technique

for estimating mean square errors,

144–150

in importance sampling, 210

Box-Muller transformation, 82

Bridge structure, in variance reduction

techniques, 157

Brownian motion, geometric, 216–217

C

Calculus, 77, 219

Cancer, 178

Cards, 189

Casualty insurance company, 93, 225

CBSM. See Conditional Bernoulli sampling

method

Central limit theorem, 26

Chebyshev’s inequality, 16–17, 136

Chi-square distribution, 265

Chi-square goodness of fit test, 248–250

303

Chi-squared random variable, 197, 249

Choleski decomposition, 99

matrix, 100, 102

Circle, 44f

Classical approximation, 260–261

Coin flip, 9

Common random numbers, variance

reduction and, 214–215

Composition approach, 56–59, 92

Compound Poisson random variable, 174

Compound random variable, 174

Compound random vectors

estimators, 229

in stratified sampling, 198–199

Conditional Bernoulli sampling method

(CBSM), 246

coupon collecting problem and, 236–238

estimator, 236

variances of, 237

as variation reduction technique,

233–239

Conditional density, 282

Conditional distribution, 64, 194, 284

Conditional expectation, 31–38

estimator, 170, 225, 228

control variable improvement of, 175

importance sampling and, 210, 214

Conditional probability, 7–9, 174

Conditional variance, 31–38

formula, 33–38, 183

proof of proposition with, 188

Conditioning, 224

estimator improvement and, 181

permutation and, 228

of standard normals, 218–219

variance reduction by, 169–179

Confidence intervals, approximate, 143–144

Consistent estimators, 240

Continuous data

in goodness-of-fit test with unspecified

parameters, 257

Kolmogorov-Smirnov test for, 250–254

Continuous random variables, 12

distribution functions of, 186

generation of, 69–95

inverse transform algorithm for, 69–73

rejection method for, 73–79

probability and, 23–31

Continuous time Markov chains, 287–290

Control group, 50

Control variates, 162–169

blackjack and, 167–169

in conditional expectation estimator

improvement, 175

list recording problem and, 166–167

Controlled estimator, 181

variance of, 163, 168

Copulas, 102–107

Gaussian, 103–105, 107

Marshall-Olkin, 105–106

multidimensional, 107

variable generation from, 107–108

Correlation, 103

between random variables, 15

Counter variables, 111

in inventory models, 121

in parallel server queuing system, 118

in single-server queuing system, 113

in tandem queuing system, 116

Coupling from past, 297–298

Coupons, 8, 172

collecting problem, 236–238

Covariance

matrix, 99

of random variables, 14–15

terms, 178

Coxian random variables, 95

Cumulative distribution function, 9

Cycles, 150

D

Debugging, 128

Density

conditional, 282

function

exponential, 77, 202, 212

joint, 201

probability, 10, 12, 30

of random vectors, 201

gamma, 74–76

joint, 101, 202, 300

function, 201

standard normal, 141f

tilted, 202

Dice, 65

Discrete data

304 Index

chi-square goodness of fit test for,

248–250

in goodness-of-fit test with unspecified

parameters, 254–257

Discrete event simulation, 3, 111–134

insurance risk model, 122–123, 131

events, 122

initialize, 123

output variables in, 122

system state variables in, 122

time variables in, 122

inventory model, 120–122

counter variables in, 121

events in, 121

system state variables in, 121

time variables in, 121

parallel server queuing system, 117–120

counter variables in, 118

events in, 118

initialize, 119–120

output variables in, 118

system state variables in, 118

time variables in, 118

repair problems, 124–126, 132

initialize, 124–125

simulating, 126f

system state variables, 124

time variables, 124

single-server queuing system, 112–115

counter variables in, 113

initialize, 113–114

simulation of, 115f

system state variables in, 113

time variables in, 113

stock options, 126–128

tandem queuing system, 115–117

counter variables in, 116

events in, 116

initialize, 116–117

output variables, 116

system state, 116

time variable, 116

verification of, 128–129

Discrete random variables, 9

alias method for generation of, 60–63

inverse transform method of generation,

47–54

probability and, 18–23

Discrete uniform random variables, 51

Distribution

beta, 37

bivariate normal, 100–102

chi-square, 265

conditional, 64, 194, 284

exponential, 71, 214

functions, 93, 145

continuous random variables, 186

cumulative, 9

empirical, 149

exponential random variables, 70

gamma, 197

standard normal, 137, 200

gamma, 37

Gaussian, 104

of independent random variables, 146

joint, 98–99, 222, 284

lognormal, 216

of multinomials, 285

multivariate normal, 97–99

Poisson, 254–255

uniform, 53

of random variables, 24

in square, 82f

of vectors, 293

Double-blind tests, 50

E

Empirical distribution function, 149

Environmental states, 174

Estimators

from antithetic variables, 186

CBSM, 236

compound random vector, 229

conditional expectation, 170, 225, 228

control variable improvement of, 175

conditioning and, 181

consistent, 240

controlled, 181

variance of, 163, 168

importance sampling, 205, 207

mean square errors of, 210

normalized importance sampling, 240

raw simulation, 183, 195, 224–225

variance of, 227, 238

simulation, 209

stratified sampling, 183

Index 305

unbiased, 162, 173, 193

variance of, 213, 215, 227, 238

European call options, 216

Evaluation of integrals

Monte Carlo approach, 40–43

Exotic options, evaluation of, 216–220

Expectations, 11–13

conditional, 31–38

estimator, 170, 175, 225, 228

importance sampling and, 210, 214

Expected value, 11

of monotone functions, 220–222

of random variables, 14

Exponentials, independent, 230

Exponential density function, 77, 202, 212

Exponential distribution, 71, 214

Exponential random variables, 26–28,

91–92, 213, 223

distribution function of, 70

independent, 30, 242

with rate k, 89–91
rates of, 179

sum of, 196

rejection method based on, 79

F

Fanning-out technique, 90

Finite capacity queuing model, 176–179

First come first served discipline, 112

G

Gamma density, 74–76

Gamma distribution, 37

function, 197

Gamma random variables, 28–30, 71–72,

94, 196–197, 284

Gauss, J. F., 104

Gaussian copula, 103–105, 107

Gaussian distribution, 104

Geometric Brownian motion, 216–217

Geometric random variables, 21–22, 51

Gibbs sampler, 271, 276–287

Glivenko-Cantelli theorem, 145

Goodness-of-fit tests

chi-square, 248–250

Kolmogorov-Smirnov test for

continuous data, 250–254

as statistical validation techniques,

247–257

with unspecified parameters

continuous data, 257

discrete data, 254–257

H

Hastings-Metropolis algorithm, 271,

274–276, 291, 299

Hit-Miss method, 225, 226f

Home runs, 283, 284

Homogenous Poisson process, 266

Hypergeometric random variables, 23

I

Importance sampling, 295

bootstrap method and, 210

conditional expectations and, 210, 214

estimator, 205, 207

normalized, 240–244

tail probabilities and, 211

variance reduction and, 201–214

Independence, probability and, 7–9

Independent Bernoulli random variables,

200, 204

sequence generation with, 52–53

Independent binomial random variables,

241

Independent exponentials, 230

Independent exponential random variables,

30, 242

with rate k, 89–91
rates of, 179

sum of, 196

Independent geometric random variables,

22

Independent increment assumption, 28

Independent Poisson process, 172

Independent Poisson random variables, 21,

264

Independent random variables

distribution of, 146, 258

variance of sum of, 15

Independent uniform random variables,

244

Inequality

Chebyshev’s, 16–17, 136

Markov’s, 16

306 Index

Insurance risk model, 122–123, 131

Integrals

evaluation

Monte Carlo approach, 41

with random numbers, 40–43

multidimensional, 196–198, 201

Intensity functions, 86

in nonhomogenous Poisson process,

177

Interarrival times

generating, 180

sequence of, 29

Interval estimates, 141–144

Inventory model, 120–122

Inverse functions, 231

Inverse transform method

for binomial random variable

generation, 56

for continuous random variable

generation, 69–73

for discrete random variables, 47–54

for Poisson random variable generation,

54

Irreducible aperiodic Markov chains,

273

J

Jacobians, 101, 243

Joint density, 101, 202, 300

function, 201

Joint distribution, 98–99, 284

of random vectors, 222

Joint mass function, 241

Joint probabilities, 20

distribution function, 102–103

K

Knockout tournaments, 228

k-of-n system, 156

Kolmogorov-Smirnov test for continuous

data, 250–254

Kruskal-Wallis test, 263

L

Lagrange multipliers, 185

Latin hypercube sampling, 244–245

Laws of large numbers, 16–17

strong, 17, 240

weak, 17

Limiting probability mass function, 279,

280, 299

Linear regression model, multiple, 168

List problem, 166–167

Lognormal distribution, 216

Lognormal random walk model, 126

M

Mann-Whitney two-sample test, 259

Markov chains, 271–274

continuous time, 287–290

coupling from past, 297–298

irreducible aperiodic, 273

Monte Carlo methods, 3, 271–301

simulated annealing in, 290–293

stationary probabilities, 271–274

time reversible, 273, 288

Markov transition probability matrix, 275

Markov’s inequality, 16

Marshall-Olkin copula, 105–106

Matrix

Choleski decomposition, 100, 102

covariance, 99

Markov transition probability, 275

notation, 98

Mean square errors (MSE)

bootstrapping technique for, 144–150

of estimators, 210

Mean-value function, 31

Memoryless property, 27

Mendelian theory of genetics, 267

Minimal cut sets, 237

Mixed congruential method, 40

Mixtures, 59

Monte Carlo approach, 41. See also

Markov chains

MSE. See Mean square errors

Multidimensional copulas, 107

Multidimensional integrals, monotone

functions of, 196–198

Multinomial random variables, 236, 285,

286

Multiple linear regression model, 168

Multiplicative congruential method, 40

Multisample problem, 262

Multivariate normal distribution, 97–99

Index 307

Multivariate normal random vector,

generating, 99–102

N

Negative binomial random variables, 22, 66

Nonhomogenous Poisson process, 30–31,

112, 177

assumption validation, 263–267

generating, 85–88

intensity function in, 177

Nonnegative integer valued random

variable, 176

Normal random variables, 24–26, 162

generating, 77–78

polar method for, 80–83

mean of, 162

variance of, 162

Normalized importance sampling

estimator, 240

as variance reduction technique,

240–244

Null hypothesis, 248

P

Parallel structure, 156

Patterns, 239

Pekoz, E., 194

Permutations

random, 65, 207

generation of, 49–50

Poisson arrivals, stratified sampling and,

192–196

Poisson assumption, 254

Poisson process, 28–30, 152, 226–227

generating, 83–84

homogenous, 266

independent, 172

nonhomogenous, 30–31, 112, 177

assumption validation, 263–267

generating, 85–88

intensity function in, 177

rates, 183

two-dimensional, 88–91, 89f

Poisson random variables, 19–21, 31

compound, 174

generating, 54–55, 71

independent, 21, 264

variance of, 184

Poker, video, 189

Population mean, interval estimates of,

141–144

Poststratification, 187

in variance reduction, 199–201

Product form, 278

Proportional stratified sampling, 184, 236

Pseudorandom number generation, 39–40

mixed congruential method, 40

multiplicative congruential method, 40

p-value approximations, 249, 253, 268

Q

Quality control, 153–155

Queuing loss model, 287–290

R

Random numbers, 2

Random permutations, 65, 207

generation of, 49–50

Random sampling, 85

Random subsets, 50

Random variables, 9–11

Raw simulation estimators, 183, 195,

224–225

variance of, 227, 238

Regenerative approach, 150

Rejection method, 57–58

based on exponential random variables,

79

for continuous random variable

generation, 73–79

for random variable simulation, 73f

theorem, 73–74

Reliability function, 156–159

Renewal process, 180–182

Repair problems, 124–126, 132

Resampling, 295

S

Sample mean

bootstrapping technique, 144–150

in statistical analysis, 135–141

new data generation, 139–141

Sample space, 5–6

Sample standard deviation, 137

Sample variance, 135–141

308 Index

Sampling importance resampling (SIR)

technique, 271, 293–296

A Second Course in Probability (Ross &

Pekoz), 194

Sequence of interarrival times, 29

Sequential queuing system, 115–117

Series structure, 156

Simulated annealing, 290–293

Single-server queuing system, 112–115,

226–227

counter variables in, 113

initialize, 113–114

simulation of, 115f

system state variables in, 113

time variables in, 113

SIR technique. See Sampling importance

resampling technique

Square, 43f

circle within, 44f

uniform distribution in, 82f

SS variables. See System state variables

Standard deviation, sample, 137

Standard normal

conditioning of, 218–219

density, 141f

distribution function, 137, 200, 231

random variable, 194

tail distribution function, 217

Stationary increment assumption, 29

Stationary probabilities, 272, 288

Statistical analysis of simulated data,

135–152

Statistical validation techniques

goodness-of-fit tests, 247–257

chi-square, 248–250

Kolmogorov-Smirnov test for

continuous data, 250–254

with unspecified parameters, 254–257

two-sample problem, 257–263

Stock option exercising, 126–128

Stopping time, 176

Stratified sampling

applications of, 192–201

compound random vectors in, 198–199

estimators, 183

lemmas in, 188

monotone functions of multidimensional

integrals, 196–198

Poisson arrivals and, 192–196

poststratification in, 187, 199–201

proportional, 184

variance reduction and, 182–192

Striking price, 126–127

Strong law of large numbers, 17, 240

Structure functions, 156

Successive event times, 87

System state (SS) variables, 111

in insurance risk models, 122

in inventory models, 121

in parallel server queuing system, 118

in repair problems, 124

in single-server queuing system, 113

in tandem queuing system, 116

T

Tail probabilities, 211–212

Tandem queuing system, 115–117

Text’s random number sequence, 45

Thinning, 85

Tilted density, 202

Tilted mass functions, 204

Time reversibility equations, 288

Time reversible Markov chains, 273, 288

Time variables, 111

in insurance risk models, 122

in inventory models, 121

in parallel server queuing system, 118

in repair problems, 124

in single-server queuing system, 113

subroutine generation of, 112–115

in tandem queuing system, 116

Traveling salesman problem, 292–293

Two-dimensional Poisson process, 88–91,

89f

Two-sample problem, 257–263

Mann-Whitney, 259

Wilcoxon, 259

Two-sample rank sum test, 259

U

Unbiased estimators, 162, 173, 193

Uniform distribution, 53

Index 309

of random variables, 24, 43

in square, 82f

V

Variance

of binomial random variables, 20

of CBSM, 237

conditional, 31–38

formula, 33–38, 183, 188

of controlled estimators, 163, 168

of estimators, 213, 215

raw simulation, 227, 238

of independent random variables, 15

of normal random variables, 162

of Poisson random variables, 184

in probability, 14–15

Variates, control, 162–169

Vectors

bivariate normal, 101

distribution of, 293

of independent uniform random

variables, 244

multivariate normal, 98

Video poker, 189

W

Wald’s equation, 176, 180, 224

Weak law of large numbers, 17

Wilcoxon two-sample test, 259

310 Index

	1
	Frontmatter

	2
	Copyright

	3
	Preface

	4
	Introduction

	5
	Elements of Probability
	2.1 Sample Space and Events
	2.2 Axioms of Probability
	2.3 Conditional Probability and Independence
	2.4 Random Variables
	2.5 Expectation
	2.6 Variance
	2.7 Chebyshev's Inequality and the Laws of Large Numbers
	2.8 Some Discrete Random Variables
	2.9 Continuous Random Variables
	2.10 Conditional Expectation and Conditional Variance
	Bibliography

	c3
	Random Numbers
	3.1 Pseudorandom Number Generation
	3.2 Using Random Numbers to Evaluate Integrals
	Bibliography

	c4
	Generating Discrete Random Variables
	4.1 The Inverse Transform Method
	4.2 Generating a Poisson Random Variable
	4.3 Generating Binomial Random Variables
	4.4 The Acceptance4pt'0137Rejection Technique
	4.5 The Composition Approach
	4.6 The Alias Method for Generating Discrete Random Variables
	4.7 Generating Random Vectors

	c5
	Generating Continuous Random Variables
	5.1 The Inverse Transform Algorithm
	5.2 The Rejection Method
	5.3 The Polar Method for Generating Normal Random Variables
	5.4 Generating a Poisson Process
	5.5 Generating a Nonhomogeneous Poisson Process
	5.6 Simulating a Two-Dimensional Poisson Process
	Bibliography

	c6
	The Multivariate Normal Distribution and Copulas
	6.1 The Multivariate Normal
	6.2 Generating a Multivariate Normal Random Vector
	6.3 Copulas
	6.4 Generating Variables from Copula Models

	c7
	The Discrete Event Simulation Approach
	7.1 Simulation via Discrete Events
	7.2 A Single-Server Queueing System
	7.3 A Queueing System with Two Servers in Series
	7.4 A Queueing System with Two Parallel Servers
	7.5 An Inventory Model
	7.6 An Insurance Risk Model
	7.7 A Repair Problem
	7.8 Exercising a Stock Option
	7.9 Verification of the Simulation Model
	Bibliography

	c8
	Statistical Analysis of Simulated Data
	8.1 The Sample Mean and Sample Variance
	8.2 Interval Estimates of a Population Mean
	8.3 The Bootstrapping Technique for Estimating MSE
	Bibliography

	c9
	Variance Reduction Techniques
	9.1 The Use of Antithetic Variables
	9.2 The Use of Control Variates
	9.3 Variance Reduction by Conditioning
	9.4 Stratified Sampling
	9.5 Applications of Stratified Sampling
	9.5.1 Analyzing Systems Having Poisson Arrivals
	9.5.2 Computing Multidimensional Integrals of Monotone Functions
	9.5.3 Compound Random Vectors
	9.5.4 The Use of Post-Stratification

	9.6 Importance Sampling
	9.7 Using Common Random Numbers
	9.8 Evaluating an Exotic Option
	9.9 Appendix: Verification of Antithetic Variable Approach
	Bibliography

	c10
	Additional Variance Reduction Techniques
	10.1 The Conditional Bernoulli Sampling Method
	10.2 Normalized Importance Sampling
	10.3 Latin Hypercube Sampling

	c11
	Statistical Validation Techniques
	11.1 Goodness of Fit Tests
	11.2 Goodness of Fit Tests When Some Parameters Are Unspecified
	11.3 The Two-Sample Problem
	11.4 Validating the Assumption of a Nonhomogeneous Poisson
	Bibliography

	c12
	Markov Chain Monte Carlo Methods
	12.1 Markov Chains
	12.2 The Hastings4pt'0137Metropolis Algorithm
	12.3 The Gibbs Sampler
	12.4 Continuous time Markov Chains and a Queueing Loss Model
	12.5 Simulated Annealing
	12.6 The Sampling Importance Resampling Algorithm
	12.7 Coupling from the Past
	Bibliography

	c13
	Index

