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In a pedantic but playful way, we discuss some common errors in the use of statistical 

analysis that are regularly observed in our professional plastic surgical literature. The 

seven errors we discuss are (1) the use of parametric analysis of ordinal data; (2) the 

appropriate use of parametric analysis in general; (3) the failure to consider the possibility 

of committing type II statistical error; (4) the use of unmodified f-tests for multiple 

comparisons; (5) the failure to employ analysis of covariance, multivariate regression, 

nonlinear regression, and logistical regression when indicated; (6) the habit of reporting 

standard error instead of standard deviation; and (7) the underuse or overuse of statistical 

consultation. Confidence and common sense are advocated as a means to balance   

statistical significance with clinical importance. 

 

I count religion but a childish toy, 

And hold there is no sin but ignorance. 

—Christopher Marlowe, The Jew of Malta (cl589 prologue [1, p. 183] 

 

Plastic surgical research has become increasingly sophisticated. The use of statistical analysis 

for the interpretation of research data has grown from an occasionally to a commonly utilized 

tool. In general, however, plastic surgeons lack a strong background in statistics. Errors in 

both the employment and the interpretation of statistical analysis are frequent in the plastic 

surgical literature [2, 3]. The purpose of this paper is to address what the authors perceive as 

the most common errors in the use of statistical analysis made by plastic surgical researchers. 

We have chosen to portray these errors as "seven deadly sins" mainly for literary effect and to 

lighten reading about this dry topic.  No tone of self-righteous indignation is intended: "He 

that is without sin among you, let him first cast a stone at her" (The Holy Bible, John 8:7). The 

focus of our discussion will be the principles of statistical analysis of data. The details of 

particular computational methods can be found in numerous standard statistical textbooks. We 

gratefully acknowledge the many who have emphasized proper use of data treatment 

principles, especially those listed in the references [4-9]. 

 

Sin 1: Using Parametric Analysis for Ordinal Data 
 

Be sure your sin will find you out. 

— The Fourth Book of Moses, Called Numbers 32:23 [1, p. 11] 

 

The basis of both Sin 1 and Sin 2 is disregarding specific conditions about the parameters of 

the population being studied. Sin 1 is the use of a parametric statistical test for ordinal data 

analysis. Although Sin 1 is really a subset of Sin 2, in our opinion it merits discussion first 

and separately as the most common statistical error found in the plastic surgery literature. The 

two critical definitions here are ordinal and parametric. 

Measurement scales can be nominal, ordinal, interval, or ratio. Nominal scales simply 

categorize data without assigning any hierarchical order. An example of nominal data would 

be compiling a list of complications from a particular surgical procedure. Although this 

nominal data allows one to distinguish between different complications, in the absence of 

additional information it does not allow the complications to be ranked in order of gravity. 

                                                           
1 The authors would like to acknowledge Paul Corey, PhD, for his teaching   and collaboration concerning 

statistical analysis over many years. Dr.Matthew Witten is gratefully acknowledged for his review of this 

manuscript for accuracy in its depiction of statistical principles. 



Ordinal scales are used to rank data points hierarchically. A familiar ordinal scale is the 

ubiquitous ranking scale for outcomes of aesthetic or reconstructive surgical procedures: poor, 

fair, good, excellent. The order of the various levels is well defined (excellent >good > fair > 

poor), but the interval between each level is not certain. 

An interval scale has discrete, defined levels and, in addition, the interval between 

each of the levels on the scale is well defined (and usually equal). The number of positive 

lymph nodes in a neck dissection is an example of interval data. A given patient cannot have 

2.6 positive lymph nodes. However, four positive nodes are twice as many as two positive 

nodes, so the interval between levels of the scale is clearly defined. The level of variation 

being measured is usually scaled with equal units. 

In a ratio scale, there is no restriction of a data point to a discrete level. Any value is 

permitted, including fractions. Ratio data meet all the qualifications of the previous levels of 

measurement scale, with the additional requirement that there must be a meaningful zero 

point representing complete lack of the characteristic. Scale values may be multiplied, added, 

and divided. Examples of ratio scales include temperature in degrees Kelvin, size in 

millimeters, molar concentrations, and weight in grams. 

In sampling theory, a parameter is a variable that expresses some property of the entire 

population (from the Greek parametrein: to measure one thing by another). Population mean, 

variance, and standard deviation are the parameters most commonly used to describe a 

population. Sample mean, standard deviation, and variance are the corresponding descriptive 

statistics for a sample of data drawn from that population. However, parameters and statistics 

are calculated. That is, multiplication and division are used to compute the mean and variance. 

In order for these mathematical operations to be valid, the data must be expressed using an 

interval or a ratio scale. 

Therein lies the sin: simply expressing ordinal data using integers does not justify the 

use of parametric statistics. Just as it is invalid to rank the results of a given surgical procedure 

as poor, fair, good, or excellent and state that the average result is "fair and a half," it is 

invalid to rate those same outcomes as 1, 2, 3, or 4 and state that the average result is 2.5. The 

Baker scale for capsular contracture, Clarke's levels for melanoma thickness, the Stass-

Lowenstein scale for staging pressure sores, Lovet's scale for rating muscle power, and other 

analogous ordinal scales all fall under this restriction. To avoid committing Sin 3, for nominal 

or ordinal scaled data, use nonparametric statistical analysis (see Sin 2). 

 

Sin 2: Inappropriate Use of Parametric Analysis 

 

0! What authority and show of truth  

Can cunning sin cover itself withal.  

—William Shakespeare, Much Ado About Nothing, IV, I, 35 [1, p. 209]. 

 

The most "common" statistical tests (Student's t-test, analysis of variance, and least-squares 

regression analysis) are parametric tests. This means they use interval or ratio scaled data to 

calculate sample statistics with direct inference to population parameters. Before parametric 

statistical analysis is appropriate, certain sampling criteria must be met: (1) the study sample 

must be randomly drawn from a normally distributed population and (2) the sample size must 

be large enough to be "representative" of the study population. Although several common 

parametric tests (the t-test in particular) are "tolerant'' of relaxation of these additional two 

criteria, in strict terms, parametric analysis should only be employed if they can be fulfilled. 

The assumption of normality of the sample data can be tested with straightforward 

statistical methods (e.g., chi-squared goodness-of-fit test or the Kolmogorov-Smirnov test). 

The minimum acceptable sample size for parametric analysis is a more subjective issue. A 



strict attitude toward sample size would be that parametric analysis is appropriate only if 

N>10 (or even N>30) for each group. A more prevalent opinion is that sample sizes sufficient 

to achieve statistically significant differences between groups or, if there is no significant 

difference between groups, to achieve an acceptable statistical power (discussed later) are 

generally acceptable. 

Regardless, unless sufficient justification for the use of parametric analysis can be 

provided, non-parametric analysis (often called "distribution-free" techniques) should be 

employed. For most of the common parametric tests, an equivalent  nonparametric   approach   

is   available   (Table). Nonparametric methods generally involve frequency analysis or the 

ranking of data and performing analysis on the ranks. Nonparametric methods can be used 

with ordinal data, do not require normally distributed data, and can be used with small sample 

sizes. 

 

Sin 3: Failure to Consider Type II Statistical Error 

 

There are worse things than a lie . . . I have found ,. . that it may be well to choose one sin in 

order that another may be shunned. 

 —Anthony   Trollope,   Doctor   Wortle's   School (1879) Ch 6 [1, p. 555] 

                             

The following discussion will consider the case of determining whether two sample (or 

experimental group) means are "statistically" different. Statistical analysis is actually the 

computation of probabilities. When using the calculation of a probability to decide whether 

two means are different"  or "the  same,"  a  widely accepted significance  level of 0.05 or 5% 

is used. If we compute that the likelihood of two samples being drawn from a single 

population is less than 5%, we conclude that the two means are "statistically significantly 

different." The interpretation of this conclusion is clear. Our null hypothesis was that  there is 

no difference between two means. Rejection of this null hypothesis signifies that there is less 

than a 5% chance that our conclusion (that the means are different) is erroneous. We accept a 

5% chance of incorrectly rejecting the null hypothesis. This wrongful rejection of the null hy-

pothesis when it is true is referred to as a type I error. Alpha is the probability associated with 

committing a type I error. By preselecting  (usually 5%), rejection of the null hypothesis is 

associated with a known and controllable chance of error. 

 

Examples of Nonparametric Analog of Common Parametric Statistical Methodsa,b 
Type of Problem Type of Data Parametric Methods          Nonparametric Methods 

Comparison of 

groups 

One group (compared to a 

reference value) 

z-test, t-test 

 

Chi-squared test, Kolmogorov-

Smirnov test 

 Two independent groups t-test, z-test, analysis of 

variance 

 

Wilcoxon's signed rank test, 

median test, chi-squared test, 

Kolmogorov-Smirnov test, 

Mann-Whitney test 

 Two paired or related groups Paired t-test, z-test Wilcoxon rank sum test, sign 

test 

 Three or more groups 

 

Analysis of variance, z-

test 

 

Kruskall-Wallis test, Friedman 

two-way analysis of variance 

by ranks 

Association 

 

One sample 

 

Least-squares correlation 

analysis 

 

Spearman rank correlation 

coefficient, Kendall's rank 

correlation coefficient (tau) 

 More than one sampleb Regression analysis or 

logistical regression 

Chi-squared test of 

independence 

 
aNote that for each row, all the tests listed in the nonparametric column are similar in approach to all of those in 



the parametric column.  
bNote that the chi-squared test can be applied to frequency data only. There is no direct nonparametric analog of 

least-squared regression analysis. 

 

A further consideration arises when we accept the null hypothesis, concluding that we 

fail to find a real difference between the two sample means. A type II error occurs when the 

null hypothesis is false and we fail to reject it. The probability of committing a type II error is 

termed beta. Alpha and   are inversely related and vary inversely with sample size. To 

decrease the probability of committing both type I and type II errors, the sample size is 

increased. When comparing two sample means given an   level and sample size (N), the 

estimated   depends on the magnitude of the difference between the two means and on 

sample variance. The relationship among these statistics for comparison of two groups using a 

z-test is given by Equation 1: 
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where: 

Z    = standart normal value  associated with  

Z/2 = standart normal value associated with   

N    = sample size 

D    = difference between the two sample means   1 2   

and       
2  =  the variance of the differences between the sample means. 

       Most commonly, a is set at 0.05, so Z/2 = 0.84. Using Equation 1, it is possible to 

determine  and the power expected when testing the statistical significance of the difference 

between the two means. Beta can be used to express the power of a statistical test. Power is 

denned as (1-). Typically, an acceptable  level is 0.20 (Z > 1.64). If no difference between 

the means is detected, this translates into a 20% chance of incorrectly concluding that the 

means are similar. 

Closer examination of this equation reveals its implications. As the difference between 

the two means (D) or the sample size (N) increases, the calculated Z  increases and the 

chance of making a type II error decreases. Conversely, as the difference between two means 

or the sample size decreases, Z decreases and the chance of making a type II error increases. 

As D approaches zero, the chance of making a type II error becomes infinite. Because of this, 

it is generally agreed that acceptance of the null hypothesis cannot be proven. Rather, one can 

only compute the  and power associated with rejection of the null hypothesis. Therefore, 

whenever a conclusion of "no significant difference" between groups is reached, a calculation 

of the associated  and resulting power using Equation 1 is needed. Note that the principles 

discussed here apply when there are more than two experimental groups, but the computation 

of  is more complex, often involving reiterative estimation  

      If the sin of failing to report   or the chance of making a type II error is serious, the sin of 

failing to compute sample sizes based on a reasonable   is fatal. When designing a study, it is 

possible to calculate the sample sizes needed to achieve an acceptable statistical power. When 

comparing two group means, Equation 1 can be rearranged as Equation 2: 
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The between-group difference (D) and the sample variance (2) can be obtained from pilot 

data, from similar data in the literature, or through educated guessing. By predetermining 



acceptable values for both   (usually 0.05) and  (usually 0.20), N can be estimated for each 

group from Equation 2. This should be completed before experiments are started and once or 

twice as data are collected. This will ensure that, if the null hypothesis is accepted once data 

collection is complete, the probability of a type II error will be "acceptable." Note that once a 

statistically significant difference between groups is achieved, type II error becomes less of a 

concern. Therefore, when collecting data, an interim analysis will determine either that a 

significant difference between groups has been obtained or that the selected  has provided 

the desired protection against accepting the null hypothesis when it is false. One of these 

criteria should be fulfilled before data collection is completed. If it is not, more data points 

should be added to the data set. Needless to say, grant applications that indicate an 

understanding of this problem by including sample size calculations as part of the experimen-

tal design are more likely to succeed than those that ignore type II error entirely. 

 

Sin 4: Using Unmodified t-Tests for Multiple Comparisons 

 

The sin ye do by two and two ye must pay for one by one. 

—Rudyard Kipling, Ib 1.60 [1, p. 708] 

 

It has been gratifying to observe a general decline in the frequency with which this sin is 

committed. Nevertheless, it is still a common error. This problem is again related to the 

calculation of probabilities and, specifically, to type I error. Consider the comparison of group 

means in an experiment with three groups: A, B, and C. If a two-group comparison test (e.g., 

the t-test) is employed, we accept, as discussed earlier, a 5% chance of being in error when 

concluding that there is a statistical difference between any two groups. To compare all three 

groups to each other, we must perform three pairwise comparisons: A vs. B, B vs. C, and A 

vs. C. Therefore, the cumulative probability of erroneously rejecting the null hypothesis is 5% 

(for A vs. B) + 5% (for A vs. C) + 5% (for A vs. C) = 15% overall. As more groups are 

compared, this cumulative chance of type I error is compounded. Therefore, multiple, 

unmodified pairwise comparisons are not valid.  

A strategy to diminish the chance of reaching invalid conclusions when comparing 

multiple group means is analysis of variance (ANOVA). Although ANOVA designs can 

become complex, the basic principle is very simple. ANOVA asks the question: Is the 

variation within the data set due to differences between groups greater than the variation due 

to differences within groups? This determination is made by computing an F ratio, which is 

an expression of between-group variation divided by within-group variation. The probability 

associated with the F ratio can then be determined from standard F distributions. If this 

probability is greater than 0.05, we conclude that the variation in our data set is due to random 

sampling and not to any effect of our group assignments. Group assignments are also called 

"main effects." In the case of a non significant overall F ratio for an ANOVA, it is not valid to 

perform pairwise comparisons of individual group means. If the F ratio is associated with a 

probability less than 0.05, we conclude that differences between groups explain a significant 

portion of the variation within the data set (i.e., that there is a significant influence of our 

main effects on group means). In this latter situation, pairwise comparisons of multiple 

individual group means are permissible, but two criteria must always he fulfilled in order for 

these comparisons to be valid.   

The first of these we have already stated: The overall ANOVA F ratio must be 

significant. For this reason, the comparison of multiple group means after an ANOVA has 

been found to be significant is referred to as post hoc testing. For maximum validity, all 

multiple comparisons of group    means must be post hoc.  The second criterion relates to the 

cumulative type I error associated with the multiple pairwise comparisons discussed earlier. 



Because the cumulative error associated with multiple pairwise testing using an a of 0.05 for 

each individual comparison will result in an increased probability of detecting a significant 

difference between groups, post hoc pairwise comparisons must be modified in some way to 

ensure an overall  of 0.05 once all the comparisons are completed.This is referred to as the 

Bonferroni principle or the Bonferroni  correction. In the case of our three-group example, we 

would modify the significance level for each individual comparison, setting = 0.05/3. Then 

our three comparisons would result in a cumulative   error of 0.05/3 (A vs. B) + 0.05/3 (B 

vs. C) + 0.05/3 (A vs. C) = 0.05 overall. There are numerous post hoc tests (Duncan's, 

Tukey's, and others), each with relative advantages and disadvantages in particular 

circumstances. However, they all employ this same principle: modification of the probability 

distribution or the significance level for each individual comparison to ensure an overall  

level of  0.05.   
One other critical feature of ANOVA should be emphasized. "Standard" ANOVA 

calculations rely on equal numbers in all cells of the design (i.e., in all groups). When there 

are unequal numbers of data points in each group, the ANOVA is said to be ''unbalanced." 

There are several ways to deal with unequal sample sizes in an ANOVA design. The 

important point is that many statistical software packages do not ideally provide for the 

analysis of unbalanced designs. In particular, the common strategy of simply filling in missing 

data points in a given group with the arithmetic mean for that group is not recommended. 

Most quality statistical software packages will indicate that analysis of an unbalanced data set 

is either not possible or that some compensatory strategy has been used. However, several 

packages that we have seen will simply ignore the unbalanced nature of the data and will 

compute F ratios without correction. This can give erroneous results. When evaluating 

statistical software, the ability to deal accurately with unbalanced ANOVA designs is an 

important feature for which to look.  

 

Sin 5: Underutilization of Analysis of Covariance (ANCOVA), Multivariate Regression, 

Nonlinear Regression, and Logistic Regression  

 

The worst sin towards our fellow creatures is not to hate them, but to be indifferent to them: 

that is the essence of inhumanity.  

—George Bernard Shaw, The Devil's Disciple, 1901, act II [1, p.680] 

 

While most plastic surgery research is conducted using relatively straightforward 

experimental designs that are adequately handled with pairwise comparisons, ANOVA, or 

standard least-squares regression analysis, there are numerous circumstances in which more 

sophisticated statistical methods should be considered. Several hypothetical examples can 

illustrate such circumstances. Consider an experiment in which nerve regeneration after 

peripheral nerve repair is studied in young, middle-aged, and old rats. Routine variables to 

document axonal regeneration (axon histomorphometry, electron microscopy (EM], 

electrophysiological evaluation] are recorded for animals in each group and the group values 

are compared using ANOVA with appropriate post hoc pairwise testing. Significant 

differences are noted for young vs. old animals, therefore the investigator concludes that 

axonal regeneration differs between young and old animals. However, young animals are both 

lighter and smaller than old adults. Consequently, body weight or, more likely, body size (i.e., 

distance needed to achieve functional axonal regeneration) may differ substantially between 

groups. If this type of confounding influence could affect conclusions, ANCOVA is a useful 

technique. 

ANCOVA asks the question: For our target (dependent] variables, is there a difference 

between groups if we adjust our data, taking into consideration differences between groups 



with regard to possible confounding variables (covarivates]? In our example, body size is a 

potential confounding variable. ANCOVA would examine differences between groups after 

accounting for the effect of the covariate (body size) and would determine whether or not 

body size had a significant relationship to the outcome variables. Because experimental 

variables are often interrelated, ANCOVA is frequently indicated, but rarely utilized by 

statistical sinners.  

When there is more than one important covariate that could affect a particular 

outcome, the use of more complex regression analysis should be considered. In a multivariate 

regression, a least-squares computational method is employed for any number of variables in 

an attempt to account for the variation observed in the dependent variable. The variance due 

to an individual, independent variable is compared to the total variation in the data set and an 

F ratio is computed. If the probability of a larger F ratio is less than 5%, that variable is 

considered to be "significant" in explaining the variation in the outcome measure. For 

example, consider an experiment to determine the factors that determine the breaking strength 

of a wound after repair. Our outcome or dependent variable is breaking strength. We also 

record the age of the animal, the time since repair, the collagen content of the wound, and the 

time of day (he wound was created and repaired. Using multivariate regression, the 

"significance" of each of these independent variables in accounting for the variation in 

breaking strength could be tested. A predictive equation could be derived. Most likely, in this 

case, we would discover that the time since repair and the collagen content of the wounds 

were highly significant in explaining the breaking strength, the age of the animal less 

significant  and the time of day of no significance at all.  

A limitation of multivariate regression is that the variables must be continuous. In 

plastic surgery, we frequently consider categorical or non-continuous variables to be of great 

significance. Such categorical variables could be sex (male vs. female), diabetes (yes vs. no), 

craniosynostosis (syndromic vs. nonsyndromic), and so on. In order to consider the effect of 

independent categorical variables such as these on a given dependent variable, logistical 

regression should be employed. The concept is identical to multivariate regression. Both 

continuous and categorical variables can be included as independent variables in the same 

analysis. In clinical outcomes research, logistical regression should be considered a pre 

eminent tool for determining the importance of the various factors that could affect a clinical 

outcome.  

Although   many   experimental   situations in plastic surgery could benefit from 

ANCOVA, multivariate and/or logistical regression analysis, o nonlinear regression, our 

observation is that they are seldom employed. As laboratory and clinical research in plastic 

surgery grows in sophistication, this sin of omission will require rectification. 

 

Sin 6: Reporting Standard Error Instead of Standard Deviation 

 

 Sin is whatever obscures the soul. 

 —Andre Gide, La Symphonie Pastorale(1919)[1, p. 727] 

 

Reporting standard error of the mean is perhaps sin at all; but, reporting standard error 

understanding- its meaning is a serious transgression. We all know that standard error is as the 

standard deviation divided by square root of N, but this equation does not the meaning of the 

standard error of the mean. Challenge yourself now; give a definition of the standard error of 

the mean without reading any further. You should have immediately stated that the standard 

error of the mean is the square root of the variance (i.e., the standard deviation) associated 

with the distribution of sample means that would be derived by repeatedly sampling n data 

elements from the study population. Now give a definition of standard deviation. Standard 



deviation is the square root of the sample variance and is, therefore, a direct measure of the 

spread of data in a sample. It is well known that two-thirds of the sample data points fall 

within one standard deviation of the sample mean and that 94% of data points fall within two 

standard deviations of the mean. This direct, easily conceptualized meaning of standard 

deviation makes it preferable when reporting descriptive statistics. The meaning of the 

standard error of the mean is far more difficult to conceptualize and therefore more difficult to 

interpret directly. The practice of reporting standard error because it "looks better" is a 

statistical sin.  

Another argument sometimes advanced for reporting standard error is that one can 

easily determine, by looking at the overlap of standard error bars on a graph, whether or not 

two means are significantly different. This belief is incorrect. It is easy to construct scenarios 

wherein two means will have values within one standard error of each other, yet they are 

significantly different statistically. It is also easy to construct the alternative scenario (bars 

don't overlap, means are not significantly different. It is not possible to determine whether two 

means are significantly statistically different simply by looking at either standard deviation or 

standard error bars on a graph, therefore, because of its direct and easily understood meaning, 

we advocate the reporting of standard deviation as the parameter indicating the spread of the 

sample data.  

 

Sin 7: Failure to Rely on a Statistician or Relying Too Much on a Statistician  
 

'What is the Unpardonable Sin?' asked the lime-burner ... 'It is a sin that grew within my own 

breast.' replied Ethan Brand .... The sin of an intellect that triumphed over the sense of 

brotherhood with man and reverence for God.  

—Nathaniel Hawthorne, Ethan Brand (1850) [1, p, 503] 

 

 "My statistician says ..." This statement is a double-edged sword. In its positive connotation, 

it indicates that the researcher has sought the expertise of a statistician to assist with the 

interpretation of data, an obviously desirable maneuver. It may, however, indicate that the 

researcher has little or no concept of the statistical methods being employed for the analysis of 

the data, preferring to abdicate all responsibility to a third party. While there are times when 

statistical analysis may become extraordinarily complex, it is our opinion that it is the 

responsibility of the primary author or investigator to understand and to agree with the 

statistical analysis utilized. This may seem unfair, since one cannot become an expert on 

everything. Nevertheless, if statistical analysis is to be used as our means of evaluating our 

research results and thereby used to validate important decisions regarding patient 

management, we submit that it is a sin simply to "give data to the statistician" and then to get 

back "results."  

An appropriate analogy may be a prospective cosmetic surgery patient. It is certainly 

not necessary for the patient to understand the multitude of details involved in the execution 

of their surgical procedure. On the other hand, most surgeons would likely agree that a patient 

who wanted no knowledge of the nature of the procedure at all [e.g., incision placement, 

amount of time off work, likely benefits, and so on] would make a very poor surgical 

candidate for many reasons, not the least of which is that they would likely be unrealistic 

about what the procedure could accomplish. In this same way, a researcher with data 

requiring interpretation should not entrust everything to a statistician, but rather should 

become informed to the extent that he/ she can actively participate in the interpretation of the 

data in a meaningful way. Very few of the  common errors in the use of statistical methods 

that can be found monthly in all of our plastic surgery journals would occur if all researchers 

accepted this responsibility.  



The question then becomes: How can an average plastic surgery researcher get to 

know something about statistics without becoming a statistician? An effective strategy to 

accomplish this goal is to develop a long-term relationship with a statistician. Choosing the 

right statistician is analogous to choosing a lawyer, doctor, or hair stylist. It will take some 

trial and error, and require some investment of time. After identifying someone who is a 

potential collaborator, it is absolutely necessary to consult with them prior to commencing 

experiments. It is critical that they achieve an understanding of your experimental goals and 

of the technical methods employed. Just as we have stated that the investigator must acquire 

statistical sophistication, it is essential that the statistician acquire a working knowledge of the 

field of research the data addresses. Data cannot be interpreted in a vacuum. The "lies, damn 

lies, and statistics" attitude springs largely from statistical interpretation of data out of the 

context of its experimental milieu. If statistical analysis is performed without an 

understanding of the underlying biology, whatever "my statistician says" becomes completely 

irrelevant.  

 

Statistical Significance vs. Clinical Importance 

 

 In medicine, sins of commission are mortaJ, sins of omission venial.  

—Theodore Tronchin, quoted in Bulletin of New York Academy of Medicine, V (1929), 151 

[1, p. 357]  

 

Like any technique for the reduction of data, statistical analysis can be used to distort the 

truth. Even if statistical methods are employed and interpreted correctly, statistical analysis is 

still merely the computation of probabilities that will not overcome problems in methodology 

and, 1996 in fact, may give a false sense of security. The statistical probability that two means 

are similar or different, that variables are interrelated, and so on cannot be used as "proof" of a 

biological or surgical hypothesis. Informed reasoning when structuring hypotheses   and   

designing experiments, and the thoughtful interpretation of the data and its statistical analysis, 

are required to decide what is "right." In this endeavour, it is sometimes appropriate to decide 

that statistical analysis is not needed or that statistical findings should be ignored. Although 

they may not be common, we would submit that these situations are at the core of the pursuit 

of science where startling or unexpected advances occur. Rather than interpreting statistical 

analysis as a "final answer," we should think of the result of statistical analysis as another 

piece of data that helps us decide whether our conceptualization of biological mechanisms is 

correct or incorrect. In order to achieve that level of scientific sophistication, we all need to 

confess and be absolved of \'m our statistical sins. 
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